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Preface
Combinatorics is a branch of mathematics dealing with discretely structured problems. Its scope of
study includes selections and arrangements of objects with prescribed conditions, configurations
involving a set of nodes interconnected by edges (called graphs), and designs of experimental
schemes according to specified rules. Combinatorial problems and their applications can be found not
only in various branches of mathematics, but also in other disciplines such as engineering, computer
science, operational research, management sciences and the life sciences. Since computers require
discrete formulation of problems, combinatorial techniques have become essential and powerful tools
for engineers and applied scientists, in particular, in the area of designing and analyzing algorithms
for various problems which range from designing the itineraries for a shipping company to sequencing
the human genome in the life sciences.

The counting problem, which seeks to find out how many arrangements there are in a particular
situation, is one of the basic problems in combinatorics. Counting is used in forensic science to
calculate the probability that a sample of biological evidence found at the crime scene matches that of
a particular accused person. In Chemistry, Cayley used graphs to count the number of isomers of
saturated hydrocarbons, while Harary and Read counted the number of certain organic compounds
built up from benzene rings by representing them as configurations of hexagons joined together along a
common edge. In Genetics, by counting all possibilities for a DNA chain made up of the four bases,
scientists arrive at an astoundingly large number and so are able to understand the tremendous
possible variation in genetic makeup. Counting has been used as well to study the primary and
secondary structures of RNA.

The second edition of Counting brings together the 13 chapters of Counting and the 7 chapters of
Counting: Supplementary Chapters and Solutions Manual. The book is intended as an introduction
to basic counting techniques for upper secondary to undergraduate students, and teachers. We believe
that it would also be of interest to those who appreciate mathematics and to avid puzzle-solvers.

The variety of problems and applications in this book is not only useful for building up an aptitude
in counting but is a rich source for honing basic skills and techniques in general problem-solving.
Many of the problems evade routine and, as a desired result, force the reader to think hard in his
attempts to solve them. In fact, the diligent reader will often discover more than one way of solving a
particular problem, which is indeed an important awareness in problem-solving. This book thus helps
to provide students an early start to learning problem-solving heuristics and thinking skills.

The first two chapters cover two basic principles, namely, the Addition Principle and the
Multiplication Principle. Both principles are commonly used in counting, even by those who would
never count themselves as students of mathematics! However, these principles have equally likely
been misunderstood and misused. These chapters help to avoid this by stating clearly the conditions
under which the principles can be applied. Chapter 3 introduces the concepts of combinations and
permutations by viewing them as subsets and arrangements of a set of objects, while Chapter 4
provides various applications of the concepts learnt.

Many apparently complex counting problems can be solved with just “a change of perspective”.
Chapter 5 presents an important principle along this line, i.e. the Bijection Principle; while Chapter 6
introduces a very useful perspective to which many counting problems can be converted to, i.e. the
distribution of balls into boxes. The next three chapters flesh out the Bijection Principle and the
distribution perspective with a number of applications and variations.

In Chapter 3, we introduce a family of numbers which are denoted by  Chapter 10 to
Chapter 12 put this family of numbers in the context of the binomial expansion and Pascal’s Triangle.



A number of useful identities are proven and problems are posed where these identities surprisingly
appear.

Chapter 13 and Chapter 14 cover the Principle of Inclusion and Exclusion (PIE), and its general
statement. Many situations of counting are complicated by the possibility of double counting.
Sometimes, however, while trying to make provisions for double counting, one may overcompensate
and deduct more than the number which was double counted. PIE neatly handles this kind of situation.

The quaintly named Pigeonhole Principle is studied in Chapter 15. Unlike the other principles
which we have discussed so far in this book, the Pigeonhole Principle does not actually count the
number of ways for a particular situation. Instead, the Pigeonhole Principle is used to check the
existence of a particular situation. This aspect of “checking existence” together with “counting” and,
as yet not discussed in our book, “optimization” are the three main focus areas in Combinatorics. In
the Pigeonhole Principle, we try to transform the problem partly into one of distributing a number of
objects into a number of boxes. The questions to focus on then become “What are the objects?” and
“What are the boxes?”

The next four chapters are on recurrence relations. Some counting problems defy the techniques
and principles learnt thus far. Chapter 16 introduces the technique of using recurrence relations.
These recurrence relations represent algebraically the situation where the solution of a counting
problem of bigger size can be obtained from the solutions of the same problem but of smaller size. It
is by writing the recurrence relations and obtaining a number series from them, that the original
counting problem can be solved. Chapter 17 to Chapter 19 study three series of numbers which are
derived from special recurrence relations. These are the Stirling numbers of the first kind, the Stirling
numbers of the second kind and Catalan numbers.

Chapter 20 closes this book with a collection of interesting problems in which the approaches to
solving them appear as applications of one or more concepts learnt in all the earlier chapters.
Problems in this and other chapters marked with (AIME) are from the American vlll Counting
Invitational Mathematics Examination. We would like to express our gratitude to Mathematical
Association of America for allowing us to include these problems in the book.

This book is based on a series of articles on counting that first appeared in Mathematical Medley,
a publication of the Singapore Mathematical Society. We would like to thank Tan Ban Pin who
greatly helped the first author with the original series. Many thanks also to our colleagues, Dong
Fengming, Lee Tuo Yeong, Toh Tin Lam and Katherine Goh for reading through the draft and checking
through the problems — any mistakes that remain are ours alone.

For those who find this introductory work interesting and would like to know more about the
subject, a recommended list of publications for further reading is provided at the end of this book.

Koh Khee Meng
Tay Eng Guan

September 2012
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= {1, 2, 3, . . . }
= {1, 2, 3, . . . , k}

(AP) : Addition Principle
(MP) : Multiplication Principle
(CP) : Complementation Principle
(IP) : Injection Principle
(BP) : Bijection Principle
(PP) : Pigeonhole Principle
(GPP) : Generalised Pigeonhole Principle
(PIE) : Principle of Inclusion and Exclusion
(GPIE) : Generalised Principle of Inclusion and Exclusion
(BT) : Binomial Theorem
LHS : Left-hand side
RHS : Right-hand side
|S| = the number of elements in the set S

= the largest integer less than or equal to x
= the largest integer less than or equal to x

FTA : Fundamental Theorem of Arithmetic
gcd : greatest common divisor
Bn = Bell number

= the number of ways of dividing n distinct objects into (nonempty) groups
C(n) = Catalannumber

= the number of shortest routes from O(0, 0) to A(n, n) which do not cross the
diagonal y = x in the rectangular coordinate system

Dn = the number of derangements of 

s*(m, k) = the number of ways of arranging m distinct objects around k identical circles such
that each circle has at least one object

s(m, k) = Stirling number of the first kind

= the coefficient of xk in the expansion
of x(x – 1)(x – 2) … (x – (m – 1))

S(m, k) = Stirling number of the second kind

= the number of ways of distributing m distinct objects into k identical boxes such
that no box is empty

= the number of r-element subsets of an n-element set
Pn

r = the number of r-permutations of n distinct objects
AIME : American Invitational Mathematics Examination





Chapter 1
The Addition Principle

In the process of solving a counting problem, there are two very simple but basic principles that we
always apply. They are called the Addition Principle and the Multiplication Principle. In this
chapter, we shall introduce the former and illustrate how it is applied.

Let us begin with a simple problem. Consider a 4-element set  In how many ways can
we form a 2-element subset of A? This can be answered easily by simply listing all the 2-element
subsets:

Thus, the answer is 6.
Let us try a slightly more complicated problem.

Example 1.1 A group of students consists of 4 boys and 3 girls. How many ways are there to select
2 students of the same sex from the group ?
Solution As the problem requires us to select students of the same sex, we naturally divide our
consideration into two distinct cases: both of the two students are boys, or, both are girls. For the
former case, this is the same as selecting 2 elements from a 4-element set. Thus, as shown in the
preceding discussion, there are 6 ways. For the latter case, assume the 3 girls are g1, g2 and g3. Then
there are 3 ways to form such a pair; namely,

Thus, the desired number of ways is (6 + 3), which is 9.
In dealing with counting problems that are not so straightforward, we quite often have to divide

our consideration into cases which are disjoint (like boys or girls in Example 1.1) and exhaustive
(besides boys or girls, no other cases remain). Then the total number of ways would be the sum of the
numbers of ways from each case. More precisely, we have:

For a finite set A, the size of A or the cardinality of A, denoted by |A|, is the number of elements in
A. For instance, if A = {u,v,w,x,y, z},  then  if A is the set of all the letters in the English
alphabet, then  if ø denotes the empty (or null) set, then 

Using the language of sets, the Addition Principle simply states the following.

Two sets  A and B are disjoint if  Clearly, the above result can be extended in a natural
way to any finite number of pairwise disjoint finite sets as given below.

Example 1.2 From town X to town Y, one can travel by air, land or sea.  There are 3 different ways



by air, 4 different ways by land and 2 different ways by sea as shown in Figure 1.1.

Figure 1.1
How many vjays are there from X to Y?

Let A1 be the set of ways by air, A2 the set of ways by land and A3 the set of ways by sea from X to
Y. We are given that

Note that  is the set of ways from X to Y. Thus, the
required number of ways is  which, by (AP), is equal to

Example 1.3 Find the number of squares contained in the 4 x 4 array (where each cell is a square )
of Figure 1.2.

Figure 1.2
Solution The squares in the array can be divided into the following 4 sets:
A1: the set of 1 × 1 squares,
A2: the set of 2 × 2 squares,
A3: the set of 3 × 3 squares, and
A4: the set of 4 × 4 squares.
There are 16 “1 × 1 squares”. Thus  There are nine “2 × 2 squares”. Thus  Likewise, 

 and 
Clearly, the sets  are pairwise disjoint and  is the set of the squares

contained in the array of Figure 1.2. Thus, by (AP), the desired number of squares is given by

Example 1.4 Find the number of routes from X to Y in the oneway system shown in Figure 1.3.



Figure 1.3
Solution Of course, one can count the number of such routes by simply listing all of them: 

Let us, however, see how to apply (AP) to introduce a more general method.
Call a route from X to Y an X–Y route. It is obvious that just before reaching Y along any X-Y

route, one has to reach D, E, F or G. Thus, by (AP), the number of X-Y routes is the sum of the
numbers of X-D routes, X-E routes, X-F routes and X-G routes.

How many X-D routes are there? Just before reaching D along any X-D route, one has to reach
either A or B, and thus, by (AP), the number of X-D routes is the sum of the numbers of X-Aroutes and
X-B routes. The same argument applies to others (X-E routes,...) as well.

Figure 1.4
It is clear that the number of X-A routes (X-B routes and X-C routes) is 1. With these initial values,

one can compute the numbers of X-D routes, X-E routes, etc., using (AP) as explained above. These
are shown in brackets at the respective vertices in Figure 1.4. Thus, we see that the total number of
possible X-Y routes is 2 + 3 + 3 + 2, i.e. 10.
Exercise
1.1 We can use 6 pieces of  to cover a 6 × 3 rectangle, for example, as shown below:

In how many different ways can the 6 × 3 rectangle be so covered?
1.2 Do the same problem as in Example 1.3 for 1 × 1,2 × 2, 3 × 3 and 5 × 5 square arrays. Observe

the pattern of your results. Find, in general, the number of squares contained in an n × n square
array, where n ≥ 2.

1.3 How many squares are there in
(i) the following 4 × 3 array (where each cell is a square)?

(ii) an n × 3 array (where each cell is a square), with n ≥ 5?
1.4 How many squares are there in the following array (where each cell is a square)?

1.5 Find the number of triangles in the following figure.

1.6 Find the number of triangles in the following figure.



1.7 How many squares are there in the following configuration (where each cell is a square with
diagonals)?

1.8 Following the arrows given in the diagram, how many different routes are there from N to S?

1.9 Following the arrows given in the diagram, how many different routes are there from N to S?



Chapter 2
The Multiplication Principle

Mr. Tan is now in town X and ready to leave for town Z by car. But before he can reach town Z, he
has to pass through town Y. There are 4 roads (labeled 1, 2, 3, 4) linking X and Y, and 3 roads
(labelled as a, b, c) linking Y and Z as shown in Figure 2.1. How many ways are there for him to
drive from X to Z?

Figure 2.1
Mr. Tan may choose road “1” to leave  X for Y, and then select “a” from Y to Z. For simplicity, we

denote such a sequence by (1,a). Thus, by listing all possible sequences as shown below:

we get the answer (4 × 3 =) 12.
Very often, to accomplish a task, one may have to split it into ordered stages and then complete

the stages step by step. In the above example, to leave X and reach Z, Mr. Tan has to split his journey
into 2 stages: first from X to Y, and then Y to Z. There are 4 roads to choose from in Step 1: To each of
these 4 choices, there are 3 choices in Step 2. Note that the number of choices in Step 2 is
independent of the choice in Step 1. Thus, the number of ways from X to Z is given by 4 × 3 (= 12).
This illustrates the meaning of the following principle.

Example 2.1 How many ways are there to select  2 students of different sex from a group of  4 boys
and 3 girls ?

E : forming a pair consisting of a boy and a girl;
E1: selecting a boy;
E2: selecting a girl.



Figure 2.2
Solution The situation when the 2 students chosen are of the same sex was discussed in Example 1.1.
We now consider the case where the 2 students chosen are of different sex.  To choose 2 such
students, we may first choose a boy and then select a girl. There are 4 ways for Step 1 and 3 ways for
Step 2 (see Figure 2.2). Thus, by the Multiplication Principle, the answer is 4 × 3 (= 12).

The Addition Principle can be expressed using set language. The Multiplication Principle can
likewise be so expressed. For the former, we make use of the union A ∪ B of sets A and B. For the
latter, we shall introduce the cartesian product A × B of sets A and B. Thus given two sets A and B,
let

namely, A × B consists of all ordered pairs (x,y),  where the first coordinate, “x”, is any member in
the first set A, and the second coordinate, “y”, is any member in the second set B. For instance, if A =
{1,2,3,4} and B = {a, b, c}, then

Assume that A and B are finite sets. How many members (i.e. ordered pairs) are there in the set A
× B? In forming ordered pairs in A × B, a member, say “x” in A is paired up with every member in B.
Thus there are |B| ordered pairs having “x” as the first coordinate. Since there are |A| members in A,
altogether we have |A| |B| ordered pairs in A × B. That is,

Principle (2.1) and result (2.2) are two different forms of the same fact. Indeed, an event E which
is split into two events in ordered stages can be regarded as an ordered pair (a, b), where “a” stands
for the first event and “b” the second; and vice versa.

Likewise, Principle (2.1) can be extended in a very natural way as follows:

By extending the cartesian product A × B of two sets to A1 × A2 ×…× Ak of k sets, we shall also
derive an identity which extends (2.2) and expresses (2.3) using set language.

Let A1 ,A2,…,Ak be k finite sets, and let

Then

Example 2.2 There are four 2-digit binary sequences:  00,01,10,11. There are eight 3-digit binary
sequences: 000,001,010,011,100,101, 110,111. How many 6-digit binary sequences can we form?
Solution The event of forming a 6-digit binary sequence can be split into 6 ordered stages as shown
in Figure 2.3.

Figure 2.3



Thus, by (2.3), the desired number of sequences is 2 × 2 × 2 × 2 × 2 × 2 = 26.
Using set language, the same problem can be treated as follows. We have

The members in A1 × A2 ×…× A6 can be identified with 6-digit binary sequences in the following
way:

Thus, the number of 6-digit binary sequences is given by | A1 × A2 × … × A6 |, which, by (2.4), is
equal to

From now on, (MP) shall refer to Principle (2.3) or the identity (2.4).
Example 2.3 Figure 2.4 shows 9 fixed points a,b,c,…, i which are located on the sides of ∆ABC. If
we select one such point from each side and join the selected points to form a triangle, how many
such triangles can be formed?

Figure 2.4
Solution To form such a triangle, we first select a point on AB, then a point on BC and finally a point
on CA. There are 3 ways in Step 1 (one of a, b,c), 4 ways in Step 2 (one of d, e, f, g) and 2 ways in
Step 3 (either h or i). Thus by (MP), there are 3 × 4 × 2 (= 24) such triangles.

We have seen in both the preceding and the current chapters some problems that can be solved by
applying (AP) or (MP) individually. Indeed, more often than not, problems that we encounter are
more 14 complex and these require that we apply the principles together. The following is an
example.
Example 2.4 (Continuation of Example 2.3) Find the number of triangles that can be formed using
the 9 fixed points of Figure 2.4 as vertices.
Solution This problem is clearly more complex than that of Example 2.3 as there are other triangles
whose three vertices are not necessarily chosen from three different sides; but then, where else can
they be chosen from? The answer is: two from one side and one from the remaining two sides. In
view of this, we shall now classify the required triangles into the following two types.
 
Type 1 — Triangles whose three vertices are chosen from three different sides.

As shown in Example 2.3, there are 3 × 4 × 2 (= 24) such triangles.
Type 2 — Triangles having two vertices from one side and one from the other two sides.

We further split our consideration into three subcases.
(i) Two vertices from AB and one from BC or CA.
There are 3 ways to choose two from AB (namely, {a,b}, {a,c} or {b,c}) and 6 ways to
choose one from the other sides (namely, d, e, f, g, h, i). Thus, by (MP), there are 3 × 6 (=
18) such triangles.



(ii) Two vertices from BC and one from CA or AB.
There are 6 ways to choose two from BC (why?) and 5 ways to choose one from the other
sides (why?). Thus, by (MP), there are 6 × 5 (= 30) such triangles.
(iii) Two vertices from CA and one from AB or BC.
There is only one way to choose two from CA and there are 7 ways to choose one from the
other sides. Thus, by (MP), there are 1 × 7 (= 7) such triangles.

Summing up the above discussion, we conclude that by (AP), there are 18 + 30 + 7 (= 55) triangles of
Type 2.

As there are 24 triangles of Type 1 and 55 triangles of Type 2, the required number of triangles is
thus, by (AP), 24 + 55 (= 79).
Exercise
2.1 Following the arrows given in the diagram, how many different routes are there from W to E?

2.2 In the following figure, ABCD and FEC are two perpendicular lines.

(i) Find the number of right-angled triangles AXCY that can be formed with X, Y taken from A, B,
D, E, F.

(ii) Find the number of triangles that can be formed with any three points A, B, C, D, E, F as
vertices.

2.3 There are 2 distinct terms in the expansion of a(p + q):

There are 4 distinct terms in the expansion of (a + b)(p + q):

How many distinct terms are there in each of the expansions of

2.4 In how many different ways can the following configuration be covered by nine 2 × 1 rectangles?

2.5 A ternary sequence is a sequence formed by 0, 1 and 2.  Let n be a positive integer. Find the
number of n-digit ternary sequences

 
  (i) with no restrictions;
 (ii) which contain no “0”
(iii) which contain at most one “0”
(iv) which contain at most one “0” and at most one “1”.



 
2.6 The following diagram shows 12 distinct points: a1,a2,a3,b1,…,b4,c1,…,c5 chosen from the sides

of ∆ABC.

  (i) How many line segments are there joining any two points, each point being from a different
side of the triangle?

 (ii) How many triangles can be formed from these points?
(iii) How many quadrilaterals can be formed from these points?



Chapter 3
Subsets and Arrangements

There are 25 students in the class. How many ways are there to choose 5 of them to form a
committee? If among the chosen five, one is to be the chairperson, one the secretary and one the
treasurer, in how many ways can this be arranged? In this chapter, our attention will be focused on the
counting problems of the above types. We shall see how (MP) is used to solve such problems, and
how (MP), by incorporating (AP), enables us to solve more complicated problems.

From now on, for each natural number n, we shall denote by  the set of natural numbers from 1
to n inclusive, i.e.

Consider the 4-element set  How many subsets of  are there? This question can be
answered readily by listing all the subsets of . Table 3.1  lists all the subsets according to the
number of elements they possess: It is now easy to count the total number of subsets of 

Table 3.1

We note that the 5 numbers, namely, 1, 4, 6, 4, 1 (whose sum is 16) shown in the rightmost column
of Table 3.1 are the corresponding numbers of r-element subsets of , where r = 0,1,2,3,4. These
numbers are very interesting, useful and important in mathematics, and mathematicians have
introduced special symbols to denote them.

In general, given two integers n and r with  we denote by  the number of r-element
subsets of . Thus, Table 3.1 tells us that

The symbol  is read “n choose r”. Some other symbols for this quantity include 
Now, what is the value of  counts, by definition, the number of 2-element subsets of ,

we may list all these subsets as shown below:

and see that there are 10 in total. Thus, we have 
You may ask: How about  ? We are sure that we are too busy to have time to compute   by

listing all the 6-element subsets of . Thus, a natural question arises: Is there a more efficient way
to compute  ? The answer is “Yes”, and we are going to show you.

Let us first consider a different but related problem. How many ways are there to arrange any
three elements of  in a row? With a little patience, we can list all the required
arrangements as shown in Table 3.2.

Table 3.2

Thus, there are 24 ways to do so. The answer is “correct” but the method is “naive”. Is there a



cleverer way to get the answer?
Imagine that we wish to choose 3 numbers from  and put them one by one into 3 spaces as

shown.

This event can be thought of as a sequence of events: We first select a number from  and place it
in the 1st space; we then select another number and place it in the 2nd space; finally, we select
another number and place it in the 3rd space. There are 4 choices for the first step, 3 choices (why?)
for the second and 2 choices (why?) for the last. Thus, by (MP), there are 4·3·2 (=24) ways to do so.
The answer agrees with what we obtained above. Isn’t this method better?

This method is better not only in shortening our solution, but also in giving us an idea on how to
generalise the above result.

In the above example, we considered the number of ways of arranging 3 elements of  in a row.
We now ask a general question: Given integers r, n with  how many ways are there to arrange
any r elements of  in a row?

Consider the r spaces shown in Figure 3.1.

Figure 3.1
We wish to choose  r elements from {1,…, n} to fill the r spaces, where the ordering of elements

matters. There are n choices for the 1st space. After fixing one in the 1st space, there are n – 1
choices remaining for the 2nd space. After fixing one in the 2nd space, there are n – 2 choices left for
the 3rd space, and so on. After fixing one in the (r – 1)th space, there are n – (r – 1) choices left for
the rth space. Thus, by (MP), the number of ways to arrange any r elements from  in a row is given
by

For convenience, let us call an arrangement of any r elements from  in a row, an r-permutation of 
, and denote by  the number of r-permutations of . Thus, we have

For instance, all the arrangements in Table 3.2  are 3-permutations of , and, by (3.1), the number of
3-permutations of  is given by

which agrees with what we have counted in Table 3.2.
The expression (3.1) for Py looks a bit long. We shall make it more concise by introducing the

following useful notation. Given a positive integer n, define n! to be the product of the n consecutive
integers n, n – 1,…, 3,2,1; that is,



Thus 4! = 4 · 3 · 2 · 1 = 24. The symbol “n!” is read “n factorial”. By convention, we define 0! = 1.
Using the “factorial” notation, we now have

That is,

When n = 4 and r = 3, we obtain

which agrees with what we found before.
The expression (3.3) is valid when  Consider two extreme cases: when r = 0 and r = n

respectively. When r = 0, by (3.3),

(How can this be explained?) When r = n, an n-permutation of  is simply called a permutation of 
. Thus, by (3.3) and that 0! = 1, the number of permutations of  is given by

i.e.

Thus, for example,  counts the number of permutations of , and we have, by (3.4), 

Let us now return to the problem of evaluating the quantity .
We know from (3.3) that the number Py of r-permutations of  is given by  We shall now

count this number (namely, the number of r-permutations of ) in a different way.
To get an r-permutation of , we may proceed in the following manner: first select an r-element

subset of , and then arrange the chosen r elements in a row. The number of ways for the first step is,
by definition, , while that for the second step is, by (3.4), r!. Thus, by (MP), we have

As

we have

and thus

For instance,



Note that when r = 0 or n, we have

Again, by convention, we define

By applying (3.5), one can show that the following identity holds (see Problem 3.1):

Thus, 
We define   as the number of r-permutations and  as the number of r-element subsets of .

Actually, in these definitions,  can be replaced by any n-element set since it is the number of the
elements but not the nature of the elements in the set that matters. That is, given any n-element set S, 
(respectively, ) is defined as the number of r-permutations (respectively, r-element subsets) of S.
Any r-element subset of S is also called an r-combination of S.

We have introduced the notions of r-permutations (or permutations) and r-combinations (or
combinations) of a set S. Always remember that these two notions are closely related but different.
While a “combination” of S is just a subset of S (and thus the ordering of elements is immaterial), a
“permutation” of S is an arrangement of certain elements of S (and thus the ordering of elements is
important).
Exercise
3.1 Show that for non-negative integers r and n, with r ≤ n,

(i) 
(ii) 
(iii) 
(iv) 

3.2 Show that for 1 ≤ r ≤ n,
(i) 
(ii) 
(iii) 
(iv) 
(v) 

3.3 Prove that the product of any n consecutive integers is divisible by n!.
3.4 Find the sum



Chapter 4
Applications

Having introduced the concepts of r-permutations and r-combinations of an n-element set, and having
derived the formulae for  we shall now give some examples to illustrate how these can be
applied.
 
Example 4.1 There are  6 boys and 5 men waiting for their turn in a barber shop. Two particular
boys are A and B, and one particular man is Z. There is a row of  11 seats for the customers. Find
the number of ways of arranging them in each of the following cases:
 

  (i) there are no restrictions;
 (ii) A and B are adjacent;
(iii) Z is at the centre, A at his left and B at his right (need not be adjacent);
(iv) boys and men alternate.

 
Solution (i) This is the number of permutations of the 11 persons. The answer is 11!.
 (ii) Treat {A, B} as a single entity. The number of ways to arrange the remaining 9 persons together

with this entity is (9 + 1)!. But A and B can permute themselves in 2 ways. Thus the total desired
number of ways is, by (MP), 2 · 10!·

(iii)

      As shown in the diagram above, A has 5 choices and B has 5 choices as well. The remaining 8
persons can be placed in 8! ways. By (MP), the total desired number of ways is 5 · 5 · 8!.

(iv) The boys (indicated by b) and the men (indicated by m) must be arranged as shown below.

The boys can be placed in 6! ways and the men can be placed in 5! ways. By (MP), the desired
number of ways is 6!5!.
 
Example 4.2 In each of the following cases, find the number of integers between 3000 and 6000 in
which no digit is repeated:
 
  (i) there are no additional restrictions;
 (ii) the integers are even.
 
Solution Let abcd be a required integer.
 
(i) As shown in the diagram below, a has 3 choices (i.e. 3, 4, or 5), say a = 3.

        Since no digit is repeated, a way of forming “bcd” corresponds to a 3-permutation from the 9-
element set {0,1, 2, 4, 5,..., 9}. Thus the required number of integers is 3 ·

(ii) Again, a = 3, 4 or 5. We divide the problem into two cases.
Case (1) a = 4 (even)



     In this case, d has 4 choices (i.e. 0, 2, 6, 8), say d = 2. Then a way of forming “bc” is a 2-
permutation from the 8-element set {0, 1, 3, 5, 6, 7, 8, 9}. Thus the required number of integers is
4 ·
Case (2) a = 3 or 5 (odd)

      In this case, d has 5 choices, and the number of ways to form “bc‛ is  The required number of
integers is 2 · 5 · 
By (AP), the desired number of integers is

Example 4.3 There are 10 pupils in a class.
 
  (i) How many ways are there to form a 5-member committee for the class?
 (ii) How many ways are there to form a  5-member committee in which one is the Chairperson, one

is the Vice-Chairperson, one is the Secretary and one is the Treasurer?
(iii) How many ways are there to form a 5-member committee in which one is the Chairperson, one

is the Secretary and one is the Treasurer?
 
Solution (i) This is the same as finding the number of 5- combinations of a 10-element set. Thus the
answer is 
 (ii) This is the same as choosing 5 pupils from the class and then placing them in the following

spaces.

Clearly, this is a “permutation” problem, and the answer is 
(iii) This problem can be counted in the following procedure: we first select one for Chairperson,

then one for Secretary, then one for Treasurer, and finally two from the remainder for committee
members as shown below:

Figure 4.1
Thus, by (MP), the answer is given by 
 
Note There are different ways to solve (iii). You may want to try your own ways.
 
Example 4.4 As shown in Example 2.2, the number of 6-digit binary sequences is 26. How many of
them contain exactly two 0’s (e.g. 001111,101101,...)?
 
Solution Forming a 6-digit binary sequence with two 0’s is the same as choosing two spaces from the
following 6 spaces into which the two 0’s are put (the rest are then occupied by 1’s) as shown below:



Thus, the number of such binary sequences is 
Example 4.5 Figure 4.2 shows 9 distinct points on the circumference of a circle.
 
 (i) How many chords of the circle formed by these points are there ?
(ii) If no three chords are concurrent in the interior of the circle, how many points of intersection

of these chords within the circle are there?

Figure 4.2
Solution (i) Every chord joins two of the nine points, and every two of the nine points determine a
unique chord. Thus, the required number of chords is .

(ii) Every point of intersection of two chords corresponds to four of the nine points, and every four of
the nine points determine a point of intersection. Thus the required number of points of
intersection is 

 
Example 4.6 At a National Wages Council conference, there are  19 participants from the
government, the unions and the employers. Among them, 9 are from the unions.

In how many ways can a 7-member committee be formed from these participants in each of the
following cases:
 

  (i) there are no restrictions?
 (ii) there is no unionist in the committee?
(iii) the committee consists of unionists only?
(iv) there is exactly one unionist in the committee ?
 (v) there is at least one unionist in the committee ?

 
Solution (i) This is the number of 7-element subsets of a 19-element set. By definition, the desired

number is 
 (ii) This is the number of ways to form a 7-member committee from the 10 non-unionists. Thus, the

desired number is 
(iii) Obviously, the desired number is 
(iv) We first select a member from the 9 unionists and then select the remaining 6 from the 10 non-



unionists. By (MP), the desired number is 
 (v) There are 7 cases to consider, namely, having r unionists, where r = 1, 2, 3, 4, 5, 6, 7. Thus, by

(AP) and (MP), the desired number is given by

Indeed, we can have a shorter way to solve this part by using the idea of “complementation”.
By (i), there are  7-member committees we can form from 19 participants. Among them, there

are  such committees which contain no unionist by (ii). Thus, the number of 7-member committees
which contain at least one unionist should be  (The reader may check that these two answers
agree.)
 

The second solution given in (v) for the above example is just an instance of applying the
following principle.

 
If you revisit Example 2.4 you may then observe that the problem can also be solved by (CP).

There are  ways to form a 3-vertex subset from the given 9 vertices. Among them, the 3 on AB and
any 3 on BC do not form a triangle. Thus, the number of triangles one can form is, by (CP),

which is 79.
We have seen from the above examples how, by applying (CP), we are able to considerably

shorten the work needed to solve a counting problem. When a direct approach involves a large
number of cases for which a certain condition holds, the complementary view of the smaller number
of cases in which the condition does NOT hold allows a quicker solution to the problem. What
follows then is that we count the number of ways afforded by the smaller number of “complementary”
cases and finally obtain the required answer by subtracting this from the total number of ways.
Exercise
4.1 (Continuation from Example 4.1)

   (v) A and B are at the two ends;
  (vi) Z is at the centre and adjacent to A and B;
 (vii) A, B and Z form a single block (i.e. there is no other person between any two of them);
(viii) all men form a single block;
  (ix) all men form a single block and all boys form a single block;
   (x)  no two of A, B and Z are adjacent;
  (xi) all boys form a single block and Z is adjacent to A;
 (xii) Z is between A and B (need not be adjacent).

 
4.2 (Continuation from Example 4.2)

(iii) the integers are odd;
(iv) the integers are divisible by 5;



 (v) the integers are greater than 3456.
 
4.3 Four people can be paired off in three ways as shown below:

(1) {{A,B}, {C,D}},
(2) {{A, C}, {B,D}},
(3) {{A,D}, {B,C}}.

 
In how many ways can 10 people be paired off?

4.4 Three girls and seven boys are to be lined up in a row. Find the number of ways this can be done
if
    (i) there is no restriction;
   (ii) the girls must form a single block;
  (iii) no two girls are adjacent;
  (iv) each boy is adjacent to at most one girl.

 
4.5 Eight students are in a sailing club. In how many ways can they form a team consisting of 4 Laser

pairs, where the order of the pairs does not matter? (Note: A Laser is a sailing boat that takes a
crew of two.)

 
4.6 There are 3 boys and 2 girls.

   (i)  Find the number of ways to arrange them in a row.
  (ii) Find the number of ways to arrange them in a row so that the 2 girls are next to each other.
 (iii) Find the number of ways to arrange them in a row so that there is at least 1 boy between the

2 girls.
 
4.7 In how many ways can a committee of 5 be formed from a group of 11 people consisting of 4

teachers and 7 students if
   (i) the committee must include exactly 2 teachers?
  (ii) the committee must include at least 3 teachers?
 (iii) a particular teacher and a particular student cannot be both in the committee?

 
4.8 A palindrome is a number that remains the same when it is read backward, for example, 2002 is a

palindrome. Find the number of n-digit palindromes.
 
4.9 A team of 6 horses to draw the royal carriage is to be chosen from a group of 10 horses.  Find in

how many ways this can be done
   (i) if the order of the horses in the team does not matter;
  (ii) if the team consists of 6 horses in a definite order;
 (iii) if the team consists of a first pair, a second pair and a third pair but order within each pair

does not matter.
4.10 Find how many four-figure numbers have three and only three consecutive figures identical.
4.11 Find the number of ways in which 9 persons can be divided into

  (i) two groups consisting of 6 and 3 persons;
 (ii) three groups consisting of 3, 3 and 2 persons with 1 person rejected.

4.12 (i) Find the number of integers from 100 to 500 that do not contain the digit “0”.



 (ii) Find the number of integers from 100 to 500 that contain exactly one “0” as a digit.
4.13 Calculate the number of ways of selecting 2 points from 7 distinct points. Seven distinct points

are marked on each of two parallel lines. Calculate the number of
  (i) distinct quadrilaterals which may be formed using 4 of the 14 points as vertices;
 (ii) distinct triangles which may be formed using 3 of the 14 points as vertices.

4.14 (a) A team to climb Mount Everest consisting of 3 teachers and 3 students is to be picked from 5
teachers and 10 students of a university. Find the number of ways in which this can be done.

(b) It was decided that 2 of the 10 students must either be selected together or not selected at all.
Find how many possible teams could be selected in these circumstances. The selected team is
arranged into 3 pairs, each consisting of a teacher and a student. Find the number of ways in
which this can be done.



Chapter 5
The Bijection Principle

We have introduced three basic principles for counting, namely, the (AP), the (MP) and the (CP).  In
this chapter, we shall introduce another basic principle for counting which we call the Bijection
Principle, and discuss some of its applications.

Figure 5.1
Suppose that there are 200 parking lots in a multi-storey carpark. The carpark is full with each

vehicle occupying a lot and each lot being occupied by a vehicle (see Figure 5.1). Then we know that
the number of vehicles in the carpark is 200 without having to count the vehicles one by one. The
number of vehicles and the number of lots are the same because there is a one-to-one correspondence
between the set of vehicles and the set of lots in the carpark. This is a simple illustration of the
Bijection Principle that we will soon state.

Let us first recall some concepts on mappings of sets. Suppose A and B are two given sets. A
mapping f from A to B, denoted by

is a rule which assigns to each element a in A a unique element, denoted by f (a), in B. Four examples
of mappings are shown pictorially in Figure 5.2.

Certain kinds of mappings are important. Let f : A → B be a mapping. We say that f is injective
(or one-to-one) if  in B whenever x ≠ y in A. Thus, in Figure 5.2, f2 and f4 are injective,
while f1 and f3 are not (why?). We say that f is surjective (or onto) if for any b in B, there exists an a
in A such that f(a) = b. Thus, in Figure 5.2, f3 and f4 are surjective whereas f1 and f2 are not (why?).
We call f a bijection from A to B if f is both injective and surjective. (Sometimes, a bijection from A
to B is referred to as a one-to-one correspondence between A and B.) Thus, in Figure 5.2, f4 is the
only bijection. These observations on the four mappings are summarised in Table 5.1.



Figure 5.2
Table 5.1

Let A and B be two finite sets. Suppose there is a mapping f: A → B that is injective. Then, by
definition, each element a in A corresponds to its image f(a) in B, and distinct elements in A
correspond to distinct images in B. Thus, we have:

Suppose further, that the one-to-one mapping f:A → B is onto. Then each element b in B has a
unique preimage a in A such that f(a) = b. In this case, we clearly have:

In this chapter, we shall focus on (BP). Through the discussions on a number of problems, we shall
show you how powerful this principle is.

First of all, let us revisit a problem we studied in Chapter 4. In Example 4.5, we counted the



number of chords and the number of points of intersection of the chords joining some fixed points on
the circumference of a circle. Let us consider a similar problem. Figure 5.3 shows five distinct points
on the circumference of a circle.

How many chords can be formed by these points?
Let A be the set of such chords, and B, the set of 2-element subsets of {1,2,3,4, 5}. Given a chord

α in A, define f(α) = {p,q}, where p, q are the two points (on the circumference) which determine the
chord α (see Figure 5.4). Then β is a mapping from A to B. Clearly, if α and β are two distinct chords
in A, then f(α) = f(β). Thus, f is injective. On the other hand, for any 2-element subset {p, q} in B (say,
p = 2 and q = 5), there is a chord α in A (in this instance, α is the chord joining points 2 and 5) such
that f(α) = {p,q}. Thus, f is onto.

Figure 5.3

Figure 5.4
Hence, f : A → B is a bijection and, by (BP), we have |A| = |B|. As B is the set of all 2-element

subsets of  We thus conclude that 
Next we ask: How many points of intersection (of these  chords) that lie in the interior of the

circle are there if no three chords are concurrent in the interior of the circle?
Let A be the set of such points of intersection and B, the set of 4-element subsets of {1,2,3,4,5}.

Figure 5.5 exhibits a bijection between A and B (figure out the rule which defines the bijection!).
Thus, by (BP),  by definition, we have 

Figure 5.5
Let us proceed to show some more applications of (BP).

Example 5.1 Figure 5.6 shows a 2 × 4 rectangular grid with two specified corners P and Q. There
are 12 horizontal segments and 10 vertical segments in the grid. A shortest P-Q route is a
continuous path from P to Q consisting of 4 horizontal segments and 2 verticalsegments. An
example is shown in Figure 5.6. How many shortest P-Q routes in the grid are there



Figure 5.6
Solution Certainly, we can solve the problem directly by listing all the possible shortest routes. This,
however, would not be practical if we wish to solve the same problem in, say, a 190 × 100
rectangular grid. We look for a more efficient way.

There are two types of segments: horizontal and vertical. Let us use a “0” to represent a horizontal
segment, and a “1” to represent a vertical segment. Thus, the shortest P–Q route shown in Figure 5.6
can accordingly be represented by the binary sequence with four “0”s and two “1”s as shown below:

and so on.
Now, let A be the set of all shortest P-Q routes and B, the set of all 6-digit binary sequences with

two 1’s. Then we see that the above way of representing a shortest P-Q route in A by a binary
sequence in B defines a mapping f : A → B. Clearly, different shortest P-Q routes in A correspond to
different sequences in B under f. Thus, fis one-to-one. Further, for any sequence b in B, say, b =
100010, one can find a shortest P-Q route, a in A, in this case,so that f(a) = b. Thus f is onto, and so it
is a bijection. Now, by (BP), we conclude that |A| = |B|. But how does this simplify our effort to find
the number of shortest P-Q routes?

Let us explain. What is the set B? B is the set of all 6-digit binary sequences with two 1’s. Can we
count |B|? Oh, yes! We have already solved it in Example 4.4. The answer is  Accordingly,
we have 
Example 5.2 The power set of a set S, denoted by  is the set of all subsets of S, inclusive of S
and the empty set ø. Thus, for  we have

Note that  Table 3.1 shows that  What is the value of 
?
Solution For convenience, let  that is, A is the power set of {1, 2, 3, 4, 5}. Represent these
subsets by 5-digit binary sequences as follows:



The rule is that the ith digit of the corresponding binary sequence is “1” if “i” is in the subset; and “0”
otherwise. Let B be the set of all 5-digit binary sequences. Clearly, the above rule establishes a
bijection between A and B. Thus, by (BP), |A| = |B|. Since |B| = 25 (see Example 2.2), |A| = 25.

Note that   What
is  for n ≥ 1? (See Exercise 5.3.)

Finally, let us introduce a counting problem related to the notion of divisors of natural numbers.
We shall denote by , the set of natural numbers; i.e.

Assume that d,n ∈ . We say that d is a divisor of n if when n is divided by d, the remainder is zero.
Thus, 3 is a divisor of 12, 5 is a divisor of 100, but 2 is not a divisor of 9.

Let n ∈ , n ≥ 2. Clearly, n has at least two divisors, namely 1 and n. How many divisors
(inclusive of 1 and n) does n have? This is a type of problem that can often be found in mathematical
competitions. We shall tackle this problem and see how (MP) and (BP) are used in solving the
problem.

To understand the solution, we first recall a special type of numbers called prime numbers and
state an important result relating natural numbers and prime numbers.

A natural number p is said to be prime (or called a prime) if p ≥ 2 and the only divisors of p are 1
and p. All prime numbers less than 100 are shown below:

The primes are often referred to as building blocks of numbers because every natural number can
always be expressed uniquely as a product of some primes. For example,

This fact is so basic and important to the study of numbers that it is called the Fundamental Theorem
of Arithmetic (FTA).

(FTA) was first studied by the Greek mathematician, Euclid (c.  450–380 BC) in the case where
the number of primes is at most 4. It was the German mathematician, Carl Friedrich Gauss (1777–
1855), known as the Prince of Mathematicians, who stated and proved the full result in 1801.



Let us now return to the problem of counting the number of divisors of n. How many divisors does
the number 72 have? Since 72 is not a big number, we can get the answer simply by listing all the
divisors of 72:

The way of counting the divisors of n by listing as shown above is certainly impractical when n
gets larger. We look for a more efficient way.

The images above are those of Euclid on a stamp of the Maldives and Gauss on a German
banknote.
 

Let us look at the example when n = 72 again and try to get some information about 72 and its
divisors by (FTA).

Observe that 72 = 23 × 32. Suppose x is a divisor of 72. Clearly, x does not contain prime factors
other than 2 and 3. That is, x must be of the form

where, clearly, p ∈ {0,1, 2, 3} and q ∈ {0,1, 2}. On the other hand, any such number 2p × 3q is a
divisor of 72. Indeed,

Let A be the set of divisors of 72 and  Then the
above list implies that the mapping f defined by

is a bijection from A to B. Thus, by (BP) and (MP), |A| = |B| = 
 which agrees with the above listing.

The following example extends what we discussed above.
Example 5.3 Find the number of divisors of 12600.
Solution Observe that 12600 = 23 × 32 × 52 × 71.

Thus a number z is a divisor of 12600 if and only if it is of the form

where a, b, c, d are integers such that  and 0 ≤ d ≤ 1.
Let A be the set of divisors z of 12600 and 

Clearly, the mapping f defined by



is a bijection from A to B. Then, by (BP) and (MP), |A| = |B| = 
We have seen from the above examples how crucial applying (BP) is as a step towards solving a

counting problem. Given a finite set A, the objective is to enumerate |A|, but unfortunately, the
straightforward approach is often not easy. In the course of applying (BP), we look for a more
familiar finite set B and try to establish a bijec-tion between these two sets. Once this is done, the
harder problem of counting |A| is transformed to an easier problem (hopefully) of counting |B|. It does
not matter how different the members in A and those in B are in nature. As long as there exists a
bijection between them, we get |A| = |B| .
Exercise
5.1 (a) Find the number of positive divisors of n if

  (i) n = 31752;
 (ii)n = 55125.

(b) In general, given an integer n > 2, how do you find the number of positive divisors of n?
5.2 Find all positive integers that are divisible by 105 and have exactly 105 different positive

divisors.
5.3 In each of the following cases, find the number of shortest P-Q routes in the grid below:

   (i) the routes must pass through A;
  (ii) the routes must pass through AB;
 (iii) the routes must pass through A and C;
(iv) the segment AB is deleted.

5.4 For each positive integer n, show that  by establishing a bijection between  and the
set of n-digit binary sequences.

5.5 Let n and r be integers with 1 ≤ r ≤ n. Prove that  by establishing a bijection between the
set of r-element subsets of n and the set of (n – r)-element subsets of n.

5.6 The number 4 can be expressed as a sum of one or more positive integers, taking order into
account, in the following 8 ways:

Show that every natural number n can be so expressed in 2n-1 ways.
5.7 How many rectangles are there in the following 6 × 7 grid?

5.8 Find the number of parallelograms which are contained in the configuration below and which
have no sides parallel to BC. (Hint: Adjoin a new row at the base of the triangle.)



5.9 If n points on the circumference of a circle are joined by straight lines in all possible ways and no
three of these lines meet at a single point inside the circle, find
(i) the number of triangles formed with all vertices lying inside the circle;
(ii) the number of triangles formed with exactly two vertices inside the circle;
(iii) the number of triangles formed with exactly one vertex inside the circle;
(iv) the total number of triangles formed.



Chapter 6
Distribution of Balls into Boxes

Figure 6.1 shows three distinct boxes into which seven identical (indistinguishable) balls are to be
distributed. Three different ways of distribution are shown in Figure 6.2. (Note that the two vertical
bars at the two ends are removed.)

Figure 6.1

Figure 6.2
In how many different ways can this be done? This is an example of the type of problem we shall

discuss in this chapter. We shall see how problems of this type can be solved by applying (BP).
In Figure 6.2, by treating each vertical bar as a “1” and each ball as a “0”, each way of

distribution becomes a 9-digit binary sequence with two 1’s. For instance,

Obviously, this correspondence establishes a bijection between the set of ways of distributing the
balls and the set of 9-digit binary sequences with two 1’s. Thus, by (BP), the number of ways of
distributing the seven identical balls into three distinct boxes is 

In general, we have:

In the distribution problem discussed above, some boxes may be vacant at the end. Supposing no
box is allowed to be vacant, how many ways are there to distribute the seven identical balls into three
distinct boxes?

To meet the requirement that no box is vacant, we first put a ball in each box and this is counted
as one way because the balls are identical. We are then left with 4 (= 7 – 3) balls, but we are now
free to distribute these 4 balls into any box. By the result (6.1), the number of ways this can be done is

 Thus, the number of ways to distribute 7 identical balls into 3 distinct boxes so that no
box is empty is 

In general, suppose we wish to distribute r identical balls into n distinct boxes, where r ≥ n, in
such a way that no box is vacant. This can be done in the following steps: First, we put one ball in
each box; and then distribute the remaining r – n balls to the n boxes in any arbitrary way. As the
balls are identical, the number of ways for the first step to be done is 1. On the other hand, by the
result (6.1), the number of ways to do the second step is



Thus, by (MP) and upon simplification, we arrive at the following result.

Example 6.1 There rare 11 men waiting for their turn in a barber shop.  Three particular men are
A,B and C. There is a row of 11 seats for the customers.  Find the number of ways of arranging
them so that no two of A, B and C are adjacent.
Solution There are different ways to solve this problem. We shall see in what follows that it can be
treated as a distribution problem.

First of all, there are 3! ways to arrange A, B and C. Fix one of the ways, say A—B—C. We then
consider the remaining 8 persons. Let us imagine tentatively that these 8 persons are identical, and
they are to be placed in 4 distinct boxes as shown in Figure 6.3 so that boxes (2) and (3) are not
vacant (since no two of A, B and C are adjacent). To meet this requirement, we place one in box (2)
and one in box (3). Then the remaining six can be placed freely in the boxes in  ways by
(6.1). (Figure 6.4 shows a way of distribution.)

Figure 6.3

Figure 6.4
But the eight persons are actually distinct. Thus, to each of these  ways, there are 8! ways to

arrange them.
Hence by (MP), the required number of ways is  which is 8! 9 · 8 · 7.

Remark The answer, 8! 9 · 8 · 7, suggests that the problem can be solved in the following way. We
first arrange the 8 persons (excluding A, B and C) in a row in 8! ways. Fix one of these ways, say

We now consider A. There are 9 ways to place A in one of the 9 boxes, say box (4):

Next, consider B. Since A and B cannot be adjacent, B can be placed only in one of the remaining 8
boxes. Likewise, C can be placed only in one of the remaining 7 boxes. The answer is thus 8! 9 · 8 · 7.
Exercise
6.1 There are 4 types of sandwiches. A boy wishes to place an order of 3 sandwiches. How many

such orders can he place?
6.2 Calculate the number of distinct 9-letter arrangements which can be made with letters of the word

SINGAPORE such that no two vowels are adjacent.
6.3 There is a group of 10 students which includes three particular students A, B and C. Find the

number of ways of arranging the 10 students in a row so that B is always between A and C. (A and
B, or B and C need not be adjacent.)

6.4 Six distinct symbols are transmitted through a communication channel. A total of 18 blanks are to



be inserted between the symbols with at least 2 blanks between every pair of symbols. In how
many ways can the symbols and blanks be arranged?



Chapter 7
More Applications of (BP)

We shall give additional examples in this chapter to show more applications of (BP).
Consider the following linear equation:

If we put x1 = 4,x2 = 1 and x3 = 2, we see that (1) holds. Since 4,1, 2 are non-negative integers, we
say that (x1,x2,x3) = (4,1,2) is a non-negative integer solution to the linear equation (1). Note that (x1,
x2, x3) = (1,2,4) is also a non-negative integer solution to (1), and so are (4, 2, 1) and (1, 4, 2). Other
non-negative integer solutions to (1) include

Example 7.1 Find the number of non-negative integer solutions to (1).
Solution Let us create 3 distinct “boxes” to represent x1,x2 and x3, respectively. Then each non-
negative integer solution (x1 ,x2,x3) = (a,b,c) to (1) corresponds, in a natural way, to a way of
distributing 7 identical balls into boxes so that there are a, b and c balls in boxes (1), (2) and (3)
respectively (see Figure 7.1).

This correspondence clearly establishes a bijection between the set of non-negative integer
solutions to (1) and the set of ways of distributing 7 identical balls in 3 distinct boxes. Thus, by (BP)
and the result of (6.1), the number of non-negative integer solutions to 

Figure 7.1
By generalising the above argument and applying the results (6.1) and (6.2), we can actually

establish the following general results.

Example 7.2 Recall that the number of 3-element subsets {a,b,c} of the set 
Assume that a < b < c and suppose further that

(i.e. no two numbers in {a,b,c} are consecutive). For instance, {1,3,8} and {3,6,10} satisfy (3) but
not {4,6, 7} and {1,2,9}. How many such 3-element subsets of  are there?
Solution Let us represent a 3-element subset {a,b,c} of  satisfying (3) by a 10-digit binary
sequence as follows:

Note that the rule is similar to the one introduced in Example 5.2. Clearly, this correspondence is a
bijection between the set A of 3-element subsets of  satisfying (3) and the set B of 10-digit binary



sequences with three 1’s in which no two 1’s are adjacent.  Thus |A| = |B|. But how do we count |B|?
Using the method discussed in Example 6.1, we obtain

Thus 
Example 7.3 Two tennis teams A and B, consisting of 5 players each, will have a friendly match
playing only singles tennis with no ties allowed. The players in each team are arranged in order:

The match is run in the following way. First, a1 plays against b1. Suppose a1 wins (i.e. b1 is
eliminated). Then a1 continues to play against b2; if a1 is beaten by b2 (i.e. a1 is eliminated), then
b2 continues to play against a2, and so on. What is the number of possible ways in which all the 5
players in team B are eliminated? (Two such ways are shown in Figure 7.2.)
Solution Let xi be the number of games won by player ai, i =1, 2, 3, 4, 5. Thus, in Figure 7.2(i),

and in Figure 7.2(ii),

In order for the 5 players in team B to be eliminated, we must have

and the number of ways this can happen is, by (BP), the number of non-negative integer solutions to
(4). Thus, the desired answer is  by the result 7.1(i).

Figure 7.2
Example 7.4 Eight letters are to be selected from the five vowels a, e,i,o,u with repetition allowed.
In how many ways can this be done if
 
  (i) there are no other restrictions?
 (ii) each vowel must be selected at least once?
Solution (i) Some examples of ways of the selection are given below:
 
(1) a, a, u, u, u, u, u, u;
(2) a, e, i, i, i, o, o, u;
(3) e, e, i, i, o, o, u, u.
 
As shown in Figure 7.3, these selections can be treated as ways of distributing 8 identical objects into
5 distinct boxes.



Figure 7.3
Thus, by (BP) and the result (6.1), the number of ways of selection is given by 
(ii) As shown in the second row of Figure 7.3, a way of selection which includes each vowel can

be treated as a way of distribution such that no box is empty. Thus, by (BP) and the result (6.2), the
number of ways of selection is given by 
Example 7.5 Consider the following two 13-digit binary sequences:

For binary sequences, any block of two adjacent digits is of the form 0, 01,10 or 11.  In each of the
above sequences, there are three 00, two 01, three 10 and four 11.  Find the number of 13-digit
binary sequences which have exactly three 00, two 01, three 10 and four 11.
Solution To have exactly three 10 and two 01 in a sequence, such a sequence must begin with 1, end
with 0, and have the changeovers of 1 and 0 as shown below, where each of the boxes (1), (3) and (5)
(respectively (2), (4) and (6)) contains only 1’s (respectively 0’s) and at least one 1 (respectively 0).

For instance, the two sequences given in the problem are of the form:

To have three 00 and four 11 in such a sequence, we must
 
  (i) put in three more 0’s in boxes (2), (4) or (6) (but in an arbitrary way), and
 (ii) put four more 1’s in boxes (1), (3) or (5) (also in an arbitrary way).
(Check that there are 13 digits altogether.) The number of ways to do (i) is  while that of
(ii) is  Thus, by (MP), the number of such sequences is  i.e. 150.
Example 7.6 Consider the following three arrangements of 5 persons A, B, C, D,E in a circle:

Figure 7.4
Two arrangements of n objects in a circle are considered different if and only if there is at least
one object whose neighbour on the right is different in the two arrangements. Thus arrangements
(i) and (ii) above are considered identical, while arrangement (iii) is considered different from (i)
and (ii). (Note that the right neighbour of A in arrangement (iii) is C while that in both (i) and (ii)
is B.) Find the number of arrangements of the 5 persons in a circle.
Solution For each arrangement of the 5 persons in a circle, let us line the 5 in a row as follows: We
always start with A at the left end. Then we place the right neighbour of A (in the circle) to the right of
A in the row. We continue, in turn, to place the right neighbour (in the circle) of the last placed person



to his right in the row until every person is arranged in the row. (We can also visualise this as cutting
the circle at A and then unraveling it to form a line.) Then each circular arrangement of the 5 persons
corresponds to an arrangement of 5 persons in a row with A at the left end. Now, since A is always
fixed at the left end, he can be neglected and the arrangement of 5 persons in a row can be seen to
correspond to an arrangement of only 4 persons (B, C, D, E) in a row (see Figure 7.5).

Figure 7.5
This correspondence clearly establishes a bijection between the set of arrangements of 5 persons

in a circle and the set of arrangements of 4 persons in a row. Thus, by (BP) and the result of (3.1), the
number of arrangements of 5 persons in a circle is 4!. ?

By generalising the above argument, we can establish the following result:

Exercise
7.1 Find the number of integer solutions to the equation:

in each of the following cases:
  (i) xi ≥ 0 for each i = 1,2,..., 5;
 (ii) x1 ≥ 3,x2 ≥ 5 and xi ≥ 0 for each i = 3,4, 5;
(iii) 0 ≤ x1 ≤ 8 and xi ≥ 0 for each i = 2,3,4, 5;
(iv) x1 + x2 = 10 and xi ≥ 0 for each i = 1,2,..., 5;
 (v) xi is positive and odd (respectively, even) for each i = 1, 2,...,5.

 
7.2 An illegal gambling den has 8 rooms, each named after a different animal. The gambling lord

needs to distribute 16 tables into the rooms. Find the number of ways of distributing the tables into
the rooms in each of the following cases:

 
  (i) Horse Room holds at most 3 tables.
 (ii) Each of Monkey Room and Tiger Room holds at least 2 tables.

 
7.3 The number 6 can be expressed as a product of 3 factors in 9 ways as follows:

In how many ways can each of the following numbers be so expressed?
 (i) 2592
(ii) 27000

 



7.4 Find the number of integer solutions to the equation:

in each of the following cases:
 

  (i) xi ≥ 0 for each i = 1, 2, 3, 4;
 (ii) 2 ≤ x1 ≤ 7 and xi ≥ 0 for each i = 2, 3, 4;
(iii) x1 ≥ –5,x2 ≥ –1,x3 ≥ 1 and x4 ≥ 2.

 
7.5 Find the number of quadruples (w,x,y,z) of non-negative integers which satisfy the inequality

7.6 Find the number of non-negative integer solutions to the equation:

7.7 There are five ways to express 4 as a sum of two non-negative integers in which the order
matters:

Given r,n ∈ , what is the number of ways to express r as a sum of n non-negative integers in
which the order matters?

7.8 There are six ways to express 5 as a sum of three positive integers in which the order matters:

Given r,n ∈  with r ≥ n, what is the number of ways to express r as a sum of n positive integers
in which the order matters?

7.9 Find the number of 4-element subsets {a, b, c, d} of the set 20 = {1, 2,... , 20} satisfying the
following condition

7.10 In a sequence of coin tosses, one can keep a record of the number of instances when a tail is
immediately followed by a head, a head is immediately followed by a head, etc. We denote these
by TH,HH, etc. For example, in the sequence HHTTHHHHTH- HTTTT of 15 coin tosses, we
observe that there are five HH, three HT, two TH and four TT subsequences. How many different
sequences of 15 coin tosses will contain exactly two HH, three HT, four TH and five TT
subsequences?

(AIME)
7.11 Show that the number of ways of distributing r identical objects into n distinct boxes such that

Box 1 can hold at most one object is given by

7.12 In a new dictatorship, it is decided to reorder the days of the week using the same names of the
days. All the possible ways of doing so are to be presented to the dictator for her to decide on
one. How many ways are there in which Sunday is immediately after Friday and immediately
before Thursday?

7.13 Five couples occupy a round table at a wedding dinner. Find the number of ways for them to be
seated if:
  (i) every man is seated between two women;
 (ii) every man is seated between two women, one of whom is his wife;
(iii) every man is seated with his wife;
(iv) the women are seated on consecutive seats.

7.14 The seats at a round table are numbered from 1 to 10. Find the number of ways in which a family
consisting of six adults and four children can be seated at the table



  (i) if there are no restrictions;
 (ii) if all the children sit together.

7.15 Four policemen, two lawyers and a prisoner sit at a round table. Find the number of ways of
arranging the seven people if the prisoner is seated
  (i) between the two lawyers;
 (ii) between two policemen.



Chapter 8
Distribution of Distinct Objects into Distinct Boxes

We have seen from the various examples given in Chapters 6 and 7 that the distribution problem,
which deals with the counting of ways of distributing objects into boxes, is a basic model for many
counting problems. In distribution problems, objects can be identical or distinct, and boxes too can be
identical or distinct. Thus, there are, in general, four cases to be considered, namely

Table 8.1

We have considered Case (1) in Chapters 6 and 7. Case (3) will be discussed in Chapter 18 as
Stirling numbers of the second kind, while Case (4) will not be touched upon in this book. In this
chapter, we shall consider Case (2).

Suppose that 5 distinct balls are to be put into 7 distinct boxes.
Example 8.1 In how many ways can this be done if each box can hold at most one ball
Example 8.2 In how many ways can this be done if each box can hold any number of balls
Solution Before we proceed, we would like to point out that the ordering of the distinct objects in
each box is not taken into consideration in the discussion in this chapter.

We first consider  Example 8.1. As shown in Figure 8.1, let a, b, c, d and e denote the 5 distinct
balls. First, we put a (say) into one of the boxes. There are 7 choices.

Figure 8.1
Next, we consider b (say). As each box can hold at most one ball, and one of the boxes is occupied by
a, there are now 6 choices for b. Likewise, there are, respectively, 5, 4 and 3 choices for c,d and e.
Thus, by (MP), the number of ways of distribution is given by 7 · 6 · 5 · 4 · 3.

Note that the above answer can be expressed as P5
7 which, as defined in Chapter 3, is the number

of ways of arranging any 5 objects from 7 distinct objects. The fact that the above answer is P5
7 does

not surprise us as there is a 1-1 correspondence between the distributions of 5 distinct balls into 7
distinct boxes and the arrangements of 5 distinct objects from 7 distinct objects as shown in Figure
8.2. (Find out the rule of the correspondence.)

Figure 8.2.
In general, we have:

We now consider  Example 8.2. There are 7 ways of putting a in the boxes. As each box can hold



any number of balls, there are also 7 choices for each of the remaining balls b, c, d and e. Thus, by
(MP), the answer is 75.

In general, we have:

Exercise
8.1 Find the number of ways for a teacher to distribute 6 different books to 9 students if

(i) there is no restriction;
(ii) no student gets more than one book.

8.2 Let A be the set of ways of distributing 5 distinct objects into 7 distinct boxes with no restriction,
and let B be the set of 5-digit numbers using 1, 2, 3, 4, 5, 6, 7 as digits with repetition allowed.
Establish a bijection between A and B.

8.3 Five friends go to a Cineplex which contains 6 theatres each screening a different movie and 2
other theatres screening the current blockbuster. Find the number of ways the friends can watch a
movie in each of the following cases:
(i) two of the friends must be together;
(ii) the theatres do not matter, only the movies do.

8.4 Find the number of ways of distributing 8 distinct objects into 3 distinct boxes if each box must
hold at least 2 objects.

8.5 Suppose that m distinct objects are to be distributed into ndistinct boxes so that each box contains
at least one object. State a restriction on m with respect to n. In how many ways can the
distribution be done if
(i) m = n?
(ii) m = n + 1?
(iii) m = n + 2?



Chapter 9
Other Variations of the

Distribution Problem
Two cases of the distribution problem were discussed in the preceding chapters.  In this chapter, we
shall study some of their variations.

When identical objects are placed in distinct boxes, whether the objects in each box are ordered
or not makes no difference. The situation is no longer the same if the objects are distinct as shown in
Figure 9.1.

Figure 9.1
 

In Chapter 8, we did not consider the ordering of objects in each box. In our next example, we
shall take it into account.
 
Example 9.1 Suppose that 5 distinct objects a,b,c,d,e are distributed into 3 distinct boxes, and that
the ordering of objects in each box matters. In how many ways can this be done?
Solution First, consider a (say). Clearly, there are 3 choices of a box for a to be put in (say, a is put
in box (2)). Next, consider b. The object b can be put in one of the 3 boxes. The situation is special if
b is put in box (2) because of the existence of a in that box. As the ordering of objects in each box
matters, if b is put in box (2), then there are 2 choices for b, namely, left of a or right of a as indicated
in Figure 9.2. Thus, altogether, there are 4 choices for b.

Figure 9.2
 

Assume that b is put in box (3). Now, consider c. As shown in Figure 9.3, c has 5 choices.

Figure 9.3
 
Continuing in this manner, we see that d and e have, respectively, 6 and 7 choices. Thus, the answer is
given by 3 · 4 · 5 · 6 · 7.
 

Let us try a different approach to solve the above problem. First, we pretend that the objects a, b,
c, d, and e are all identical. The number of ways of distributing 5 identical objects into 3 distinct
boxes is, by result (6.1),  Next, take such a way of distribution, say,

Since the 5 objects are actually distinct and the ordering of objects matters, such a distribution for



identical objects corresponds to 5! different distributions of distinct objects. Thus, by (MP), the
answer is given by  5! which agrees with the answer 3 · 4 · 5 · 6 · 7.

In general, we have:

In our previous discussion on the distribution problem, objects were either all identical or all
distinct. We now consider a case that is a mixture of these two.
 
Example 9.2 Four identical objects “a”, three identical objects “b” and two identical objects “c”
are to be distributed into 9 distinct boxes so that each box contains one object. In how many ways
can this be done?
 
Solution   Let’s start with the four a’s. Among the 9 boxes, we choose 4 of them, and put one a in each
chosen box. Next, we consider the three b’s. From among the 5 remaining boxes, we choose 3, and
put one b in each chosen box (see Figure 9.4). Finally, we put one c in each of the 2 remaining boxes.

Figure 9.4
There are  ways for step 1,  ways for step 2 and  way for step 3. Thus, by (MP), the answer
is given by

Remark In the above solution, a is considered first, followed by b and finally c. The answer is
independent of this order. For instance, if b is considered first, followed by c and then a, by applying
a similar argument we arrive at  which is again 

There is a 1-1 correspondence between the distributions considered in Example 9.2 and the
arrangements of 4 a’s, 3 b’s and 2 c’s in a row as shown in Figure 9.5.

Figure 9.5
 
Thus, by the result of Example 9.2, the number of arrangements of 4 a’s, 3 b’s and 2 c’s in a row is
given by

In general,



Let us reconsider Example 9.1. We observe that there is a 1-1 correspondence between the
distributions considered in Example 9.1 and the arrangements of a, b, c, d, e and two 1’s as shown in
Figure 9.6.

By the above result, the number of arrangements of a, b, c, d, e and two 1’s is given by  which
agrees also with the earlier two answers.

Figure 9.6
Exercise
9.1 Calculate the number of different arrangements which can be made using all the letters of the word

BANANARAMA.
9.2 Calculate the number of distinct 9-letter arrangements which can be made with letters of the word

PROCESSES. How many of these end with SSS?
9.3 Find the number of arrangements of 4 identical squares, 5 identical pentagons and 6 identical

hexagons in a row if
   (i) there is no restriction;
  (ii) no two pentagons are adjacent;
 (iii) any two squares are separated by at least two other polygons.

9.4 Let A = {1,2,..., m} and B = {1,2,... ,n} where m,n ≥ 1. Find the number of
    (i) mappings from A to B;
   (ii) 1–1 mappings from A to B (here m ≤ n);
  (iii) mappings f : A → B such that f (i) < f (j) in B whenever i < j in A (here m ≤ n);
 (iv) mappings f : A → B such that f (1) = 1.

9.5 Let A = {1,2,..., m} and B = {1,2,..., n}. Find the number of onto mappings from A to B in each of
the following cases:
   (i) m = n;
  (ii) m = n + 1;
 (iii) m = n + 2.
(Compare this problem with Problem 8.5.)

9.6 Ten cars take part in an Automobile Association of Singapore autoventure to Malaysia.  At the
causeway, 4 immigration counters are open. In how many ways can the 10 cars line up in a 4- line
queue?

9.7 Solve Problem 8.5 with an additional condition that the ordering of objects in each box counts.
9.8 Show that



where 



Chapter 10
The Binomial Expansion

In Chapter 3, we introduced a family of numbers which were denoted by  Given integers n
and r with  the number  is defined as the number of r-element subsets of the set n =
{1,2,..., n}. That is,  is the number of ways of selecting r distinct objects from a set of n distinct
objects. We also derived the following formula for :

By applying (10.1), or otherwise, we can easily derive some interesting identities involving these
numbers such as:

In this chapter, we shall learn more about this family of numbers and derive some other important
identities involving them.

In algebra, we learn how to expand the algebraic expression (1 + x)n for n = 0,1, 2, 3. Their
expansions are shown below:

Notice that the coefficients in the above expansions are actually numbers of the form . Indeed, we
have:

What can we say about the coefficients in the expansion of (1 + x)4? Will we obtain

Let us try to find out the coefficient of x2 in the expansion of (1+x)4. We may write

Table 10.1



Observe that in the expansion, each of the factors (1), (2), (3) and (4) contributes either 1 or x, and
they are multiplied together to form a term. For instance, to obtain x2 in the expansion, two of (1), (2),
(3) and (4) contribute x and the remaining two contribute 1. How many ways can this be done? Table
10.1 shows all the possible ways, and the answer is 6.

Thus, there are 6 terms of x2 and the coefficient of x2 in the expansion of (1 + x)4 is therefore 6.
Indeed, to select two x’s from four factors (1 + x), there are  ways (while the remaining two have
no choice but to contribute “1”). Thus the coefficient of x2 in the expansion of (1 + x)4 is which is 6.
Using a similar argument, one can readily see that

In general, what can be said about the expansion of (1 + x)n, where n is any natural number?
Let us write

To expand (1 + x)n, we first select 1 or x from each of the n factors (1 + x), and then multiply the n
chosen 1’s and x’s together. The general term thus obtained is of the form xr, where 0 ≤ r ≤ n. What is
the coefficient of xr in the expansion of (1 + x)n if the like terms are grouped? This coefficient is the
number of ways to form the term xr in the product (*). To form a term xr, we choose r factors (1 + x)
from the n factors (1 + x) in (*) and select x from each of the r chosen factors. Each of the remaining n
– r factors (1 + x) has no other option but to contribute 1. Clearly, the above selection can be done in 

 ways. Thus, the coefficient of xr in the expansion of (1 + x)n is given by . We thus arrive at the
following result:

Exercise
10.1 By applying Identity (10.1), or otherwise, derive the following identities:

  (i) 
 (ii) 

10.2 In the expansion of (1 + x)100, it is known that the coefficients of xr and x3r, where 1 ≤ r ≤ 33, are
equal. Find the value of r.

10.3 What is the largest value of k such that there is a binomial expansion (1 + x)n in which the
coefficients of k consecutive terms are in the ratio 1:2:3: … : k? Identify the corresponding
expansion and the terms.

10.4 Find the terms in the expansion of (1 + 3x)23 which have the largest coefficient.



Chapter 11
Some Useful Identities

We gave four simple identities involving binomial coefficients, namely (10.2) -(10.5), in Chapter 10.
In this chapter, we shall derive some more identities involving binomial coefficients from (BT).
These identities, while interesting in their own right, are also useful in simplifying certain algebraic
expressions.

Consider the expansion of (1 + x)n in (BT). If we let x = 1, we then obtain from (BT) the
following

Example 11.1 In Example 5.2, we discussedi a counting problem on P(S), the set of all subsets of a
finite set S. If S is an n-element set (i.e. |S| = n), it can be shown (see Problem 5.4) by establishing
a bijection between P(S) and the set of n-digit binary sequences that there are exactly  2n subsets
of S inclusive of the empty set  and the set S itself (i.e. |P(S)| = 2n). We can now  (give a more
natural proof for this fact. Assume that |S| = n. By definition, the number of

Thus,

Example 11.2 The number 4 can be expressed as a sum of one or more positive integers, taking
order into account, in the following 8 ways:

Show that every natural number n can be so expressed in 2n–1 ways.
Solution This is in fact Problem 5.6. Let us see how (B1) can be used to prove the result. But first of
all, consider the special case above when n = 4.

We write 4 = 1 + 1 + 1 + 1 and note that there are three “+”s in the expression.  Look at the
following relation.



This correspondence is actually a bijection between the set of all such expressions of 4 and the set of
all subsets of three “+”s. Thus, by (BP) and (B1), the required answer is

In general, write

and note that there are n – 1 “+”s in the above expression. We now extend the above technique by
establishing a bijection between the set of all such expressions of n and the set of all subsets of n – 1
“+”s. Thus, by (BP) and (B1), the number of all such expressions of n is

Consider again the expansion of (1 + x)n in (BT). If we now let x = –1, we then have

where the terms on the LHS alternate in sign. Thus, if n is even, say n = 2k, then

and if n is odd, say n = 2k + 1, then

As

by (B1), we have:

Example 11.3 A finite set S is said to be “even” (“odd”) if |S| is even (odd). Consider 8 =
{1,2,...,8}. How many even (odd) subsets does 8 have?
Solution The number of even subsets of 8 is

and the number of odd subsets of 8 is

By (B2)

Consider the following binomial expansion once again:



If we treat the expressions on both sides as functions of x, and differentiate them with respect to x,
we obtain:

By letting x = 1 in the above identity, we have:

Let us try to derive (B3) by a different way. Consider the following problem. Suppose that there
are n(n ≥ 1) people in a group, and they wish to form a committee consisting of people from the
group, including the selection of a leader for the committee. In how many ways can this be done?

Let us illustrate the case when n = 3. Suppose that A,B,C are the three people in the group, and that
a committee consists of k members from the group, where 1 ≤ k ≤ 3. For k = 1, there are 3 ways to do
so as shown below.

For k = 2, there are 6 ways to do so as shown below.

For k = 3, there are 3 ways to do so as shown below.

Thus, there are altogether 3 + 6 + 3 = 12 ways to do so.
In general, from a group of n people, there are  ways to form a k-member committee, and k

ways to select a leader from the k members in the committee. Thus, the number of ways to form a k-
member committee including the selection of a leader is, by (MP), k . As k could be 1,2,...,n, by
(AP), the number of ways to do so is given by

Let us count the same problem via a different approach as follows. First, we select a leader from
the group, and then choose k – 1 members, where k = 1, 2,... ,n, from the group to form a k-member
committee. There are n choices for the first step and

ways for the second step. Thus, by (MP) and (B1), the required number is



Since both

count the same number, identity (B3) follows.
In the above discussion, we establish identity (B3) by first introducing a “suitable” counting

problem. We then count the problem in two different ways so as to obtain two different expressions.
These two different expressions must be equal as they count the same quantity. This way of deriving
an identity is quite a common practice in combinatorics, and is known as “counting it twice”.
Exercise
11.1 By applying Identity (10.5) or otherwise, show that

11.2 Show that

11.3 Show that

by integrating both sides of  with respect to
       x.
11.4 Show that

11.5 Solve Example 11.2 by using result (7.1)(ii).



Chapter 12
Pascal’s Triangle

In Chapter 10, we established the Binomial Theorem (BT) which states that for all non-negative
integers n,

Let us display the binomial coefficients row by row following the increasing values of n as shown in
Figure 12.1. We observe from Figure 12.1 the following.
 
1. The binomial coefficient at a lattice point counts the number of shortest routes from the top lattice

point (representing ) to the lattice point concerned. For example, there are  (= 6) shortest
routes from the lattice point representing  to the lattice point  (also see Example 5.1).

Figure 12.1
2. The number pattern is symmetric with respect to the vertical line through the rop lattice point, and

this observation corresponds to the identity  (see (10.2)).
3. Any binomial coefficient represented by an interior lattice point is equal to the sum of the two

binomial coefficients represented by the lattice points on its “shoulders” (see Figure 12.2). This
observation corresponds to the identity  (see (10.3)).

Figure 12.2
4. The sum of the binomial coefficients in the nth row is equal to 2n and this fact corresponds to the

identity

The number pattern of Figure 12.1 was known to Omar Khayyam and Jia Xian around 1100 AD.
The pattern was also found in the book written by the Chinese mathematician Yang Hui in 1261, in
which Yang Hui called it, the Jia Xian triangle.  The number pattern in the form of Figure 12.3 was
found in another book written by another Chinese mathematician Zhu Shijie in 1303.

However, the number pattern of Figure 12.1 is generally called Pascal’s Triangle  in memory of
the great French mathematician Blaise Pascal (1623-1662) who also applied the “triangle” to the
study of probability, a subject dealing with “chance”. For a history of this number pattern, readers are
referred to the book Pascal’s Arithmetical Triangle by A. W. F. Edwards (Oxford University Press



Figure 12.3

Blaise Pascal
Look at Pascal’s triangle of Figure 12.4.
What is the sum of the six binomial coefficients enclosed in the shaded rectangle? The answer is

56. Note that this answer appears as another binomial coefficient located on the right of 21 in the next
row. Is this situation just a coincidence? Let us take a closer look.

Figure 12.4
Observe that



by applying the identity 

Figure 12.5

Figure 12.6
The above result is really a special case of a general situation. As a matter of fact, the above

argument can also be used to establish the following general result (see also Figure 12.5):

By the symmetry of Pascal’s triangle, one obtains the following accompanying identity of (B4) (see
also Figure 12.6):



A second look at Figures 12.5 and 12.6 will make us easily realise why (B4) and (B5) are often
called the “Hockey Stick Identities”.

To end this chapter, we show an application of Identity  (B4) in the solution of the following
problem which appeared in International Mathematical Olympiad 1981.
Example 12.1 Let 1 ≤ r ≤ n and consider all r-element subsets of the set {1,2,... ,n}. Each of these
subsets has a smallest member.  Let F(n,r) denote the arithmetic mean of these smallest numbers.
Prove that

Solution As an illustration of this problem, we consider the case when n = 6 and r = 4. There are 
 4-element subsets of the set {1,2,3,4,5,6}. They and their “smallest members” are listed in

Table 12.1.
Table 12.1

By definition,

and this is equal to  when n = 6 and r = 4.
Write n = {1,2,..., n}. To evaluate F(n, r), it is clear that we need to first find out

 
1. which numbers in n could be the smallest member of an r-element subset of n (in the above

example, these are 1, 2, 3 but not 4, 5, 6), and
2. how many times such a smallest member occurs (in the above example, 1 occurs ten times, 2 four

times and 3 once);
 
and then sum these smallest numbers up, and finally divide by , the number of r-element subsets of 
n, to obtain the “average”.

The last r elements (according to the magnitude) of the set n are:

It follows that n – r + 1 is the largest possible number to be the smallest member of an r-element
subset of n. Hence, 1,2,3,... ,n – r + 1 are all the possible candidates to be the smallest members of
r-element students of n.

Let k ∈ {1,2,3,... ,n – r + 1}. Our next task is to find out how many times k occurs as the smallest
member. To form an r-element subset of n containing k as the smallest member, we simply form an



(r–1)-element subset from the (n–k)-element set {k+1, k+2,... ,n} and then add k to it. The number of
(r – 1)-element subsets of {k + 1,k + 2,. ..,n} is given by  Thus, k occurs times as the smallest
member. Let Σ denote the sum of all these smallest members. Then, as k = 1,2,...,n – r + 1, we have

Now, by applying (B4) to each summand above except the last one and noting that  can
be simplified to

By applying (B4) once again, we have

Finally, by definition of F(n,r), it follows that

as desired.
Exercise
12.1 Find the coefficient of x5 in the expansion of

12.2 Find the coefficient of x3 in the expansion of

  where n is a natural number with n ≥ 4.
12.3 Consider the rows of Pascal’s Triangle.  Prove that if the nth row is made into a single number

by using each element as a digit of the number (carrying over when an element itself has more
than one digit), the number is equal to 11n–1. (For example, from the first row 1 = 110, from the
second row 11 = 111, from the third row 121 = 112, and from the 6th row 15(10)(10)51 =
15(11)051 = 161051 = 115.)

12.4 On the rth day of an army recruitment exercise, r men register themselves. Each day, the
recruitment officer chooses exactly k of the men and line them up in a row to be marched to the
barracks. Show that the sum of the numbers of all the possible rows in the first 2k days is equal
to the number of possible rows in the (2k + 1)th day.

12.5 The greatest integer not exceeding a real number x is denoted by  Show that
  (i)



 (ii)  with equality if and only if  is odd.
12.6 Evaluate 
12.7 Find the number of non-negative integer solutions to

  in the following two ways:
  (i) Consider the cases when RHS = 0,1,2,..., 30.
 (ii) Consider the situation of distributing a suitable number of identical objects into 5 distinct

boxes.
  Hence, use a similar approach to prove the Hockey Stick

        Identity (B4).
12.8 In Pascal’s Triangle, there is a row where you can find three consecutive terms  x, y, z such that x

: y : z = 4:5:6. Which row is it? Which terms are they?



Chapter 13
The Principle of Inclusion and Exclusion

In Chapter 1, we introduced the Addition Principle (AP) which was expressed in terms of sets as
follows:

In the statement above, A and B are assumed to be disjoint, written , i.e. A and B have no
elements in common. Can we express |A∪B| in terms of |A| and |B| regardless of whether A and B are
disjoint? In counting the elements in A∪B, we may first count those in A and then those in B .In doing
so, any element in A ∩ B (if there is) is counted exactly twice. Thus, to get the exact count of A ∪ B|,
the number A ∩ B| should be deducted. It follows that:

This result can also be seen intuitively with the help of the Venn diagram of Figure 13.1.
Note that (13.1) is a special case of (13.2) as (13.1) follows from (13.2) if we assume that 

Identity (13.2) is a simplest form of a principle called the Principle of Inclusion and Exclusion
(PIE), which is a very useful and powerful tool in enumeration. First of all, let us show two
applications of (13.2).
Example 13.1 Find the number of integers from the set {1,2,…, 1000} which are divisible by 3 or
5.

Figure 13.1
Discussion and Solution The integers which we are looking for are 3, 5, 6, 9, 10, 12, 15, 18, 20, … ,
999, 1000. How many are there? Let us try to present the solution more formally, and so we let

It is now clear that our task is to evaluate  is the set of numbers in S which are divisible
by 3 or 5.

Before applying (13.2) to evaluate |A ∪ B|, we recall a useful notation:
For a real number r, let  denote the greatest integer that is smaller than or equal to r.
Thus  and so on.
How many integers in {1, 2,…, 10} are there which are divisible by 3? There are three (namely,

3, 6, 9) and note that “three” can be expressed as  The number of integers in {1,2,…, 10} which
are divisible by 5 is two (namely, 5, 10) and note that “two” can be expressed as 

Indeed, in general:
For any two natural numbers n, k with k ≤ n, the number of integers in the set {1,2,…, n} which
are divisible by k can be expressed as 

We now return to our original problem of evaluating |A ∪ B|. To apply (13.2), we need to find |A|,
|B| and |A ∩ B|. Using the result mentioned above, we see that  and |B|=  It



remains to find |A∩B|. What does A∩B represent? Well, A ∩ B is the set of integers in S which are
divisible by both 3 and 5. How to evaluate |A ∩ B|? It seems that this problem is as hard as that of
evaluating |A ∪ B|.

Luckily, this is not so as there is a result in Arithmetic that can help us.  Let a, b be any two
positive integers. It is known that:
An integer is divisible by both a and b when and only when it is divisible by the LCM (least
common multiple) of a and b.

It thus follows that A ∩ B is the set of numbers in S which are divisible by the LCM of 3 and 5. As
the LCM of 3 and 5 is 15, we conclude that

Thus 
Finally, by (13.2), we have

Example 13.2 Find the number of positive divisors of at least one of the numbers 5400 and 18000.
Discussion and Solution In Chapter 5, we discussed the problem of finding the number of positive
divisors of a natural number by some examples. The answers obtained can be generalised to lead to
the following general result:

We shall see that this result will play an important role in solving our problem.
Let  x is a divisor of 5400} and  x is a divisor of 18000}. Clearly, our task is

to evaluate A ∪ B To apply (13.2) , we need to count |A|, |B| and |A ∩ B|.
Observe that

Thus, by applying the result stated above, we have

What does A ∩ B represent? By definition, A ∩ B is the set of common positive divisors of 5400
and 18000, and so it is the set of positive divisors of the Greatest Common Divisor (gcd) of 5400 and
18000. Since

it follows that

Hence, by (13.2), we have

Formula (13.2) provides an expression for |A ∪ B|. We shall now apply it to derive an expression
for |A ∪ B ∪ C|, where A, B and C are any three finite sets.

Observe that



That is,

We shall now show an application of (13.3).
Example 13.3 Figure 13.2 shows a 4 by 8 rectangular grid with two specified corners p and q and
three specified segments uv, wx and yz.

Figure 13.2
Find in the grid

 
    (i)  the number of shortest p-q routes;
   (ii)  the number of shortest p-q routes which pass through

   wx;
  (iii)  the number of shortest p-q routes which pass through at least oneof the segments uv, wx

and yz;
 (iv)  the number of shortest p-q routes which do not pass through any of the segments uv, wx

and yz.

Figure 13.3
Discussion and Solution (i) The problem of counting the number of shortest p-q routes in a
rectangular grid was discussed in Example 5.1. Employing the idea developed there, it can be shown
that the number of shortest p-q routes in the grid of Figure 13.2 is given by

(ii) As shown in Figure 13.3, a shortest p-q route passing through wx consists of a shortest p-w route
(in a 2 by 3 grid), the segment wx and a shortest x-q route (in a 2 by 4 grid). Thus, the number of
shortest p-q routes passing through wx is given by



(iii) The counting is more complicated in this case. We introduce three subsets of the set of shortest p-
q routes below.

Let A be the set of shortest p-q routes which pass through uv, B  be the set of shortest p-q routes
which pass through wx, and C be the set of shortest p-q routes which pass through yz. We note that the
answer we are looking for is not | A| + |B| + C| as the sets A, B, C are not pairwise disjoint. The
desired answer should be |A ∪ B ∪ C|, and this gives us a chance to apply (13.3). To apply (13.3), we
need to evaluate each term on the RHS of (13.3).

First, applying the idea shown in the solution of part (i), we have

Next, let us compute 
Observe that A ∩ B is the set of shortest p-q routes passing through both uv and wx. Any such

shortest p-q route consists of a shortest p-q route, the route uvwx and a shortest x-q route. Thus, 

Likewise, we obtain 
And each route in A ∩ C consists of a shortest p-u route, the segment uv, a shortest v-y route, the

segment yz and a shortest z-q route, which gives

Finally, we evaluate | A ∩ B ∩ C|. Each route in A ∩ B ∩ C is a p-q route consisting of a shortest
p-u route, the route uvwxyz and a shortest z-q route. Thus,

We are now in a position to evaluate |A ∪ B ∪ C|. By (13.3),

(iv) Before solving this part, recall the following identity presented in Chapter 4:

Now, let S be the set of shortest p-q routes in the grid of Figure 13.2. Then we have to evaluate |S\
(A ∪ B ∪ C)|, which is equal to

By (i), we have  and by (iii), 
Thus, the desired answer is 
In the solution of Example 13.3 (iv), we evaluated |S\(A∪B ∪C)| using (13.3) and (13.4). Now, we

shall derive an explicit expression for |S\(A∪B ∪C)| and show an application of this formula.
In what follows, let S be a finite set which is “very large” in the sense that all the sets that we

shall consider in a problem are subsets of S. In mathematics, we call such a set S a universal set. For
instance, in Example 13.1, the universal set is {1, 2,… , 1000}; in Example 13.2, the universal set is
the set of natural numbers; and in Example 13.3, the universal set is the set of shortest p-q routes in



the grid of Figure 13.2.
Let A ⊆ S. We write  for S\A, and call  the complement of A. In the study of sets, there are two

very important laws relating the set operations “union”, “intersection” and “complementation”. They
are called De Morgan’s laws and are stated below.

Let A, B, C be any three subsets of S. We shall see that the set |S\(A∪B ∪C)| that we considered in
Example 13.3(iv) can be expressed as  Indeed,

 by (13.5)
 by (13.5)

It follows that  Thus, by (13.3), we obtain:

We have just seen how  (13.6) was derived from (13.3). It is not difficult to see also that (13.3)
can be derived from (13.6). We say that these two identities are equivalent.

Now, let X = {1,2,…, m} and Y = {1,2,…, n}, where m,n ∈ . The problems of counting the
number of mappings and the number of 1–1 mappings from X to Y were proposed in Problem 9.4. Let
us reconsider these problems here.

Suppose that X = {1, 2, 3} and Y = {1, 2, 3, 4, 5}. How many mappings are there from X to Y?
There are three elements in X, and each of them can be mapped to one of the five elements in Y. Thus
the number of mappings from X to Y is given by 5 · 5 · 5 = 53.

How many 1–1 mappings are there from X to Y? The element “1” in X can be mapped to one of the
five elements in Y (5 choices). The element “2” in X can be mapped to one of the remaining four
elements in Y(4 choices; excluding the image of “1”). Finally, the element “3” in X can be mapped to
one of the remaining three elements in Y(3 choices; excluding the images of “1” and “2”). Thus, the
number of 1-1 mappings from X to Y is given by 5 · 4 · 3.

Indeed, in general, we have:

What can be said about the number of onto mappings from X to Y? It is interesting to note that this
problem is not as straightforward as those of counting the numbers of mappings and 1–1 mappings. In
the following example, we shall see how Identity (13.6) is used to tackle this more difficult problem.
Example 13.4 Let X = {1, 2, 3, 4, 5} and Y = {1, 2, 3}. Find the number of onto mappings from X to
Y.
Discussion and Solution Let S be the set of mappings from X to Y. We shall now introduce three
subsets A, B, C of S as follows:
Let A be the set of mappings from X to Y\{1},
B be the set of mappings from X to Y\{2},
and C be the set of mappings from X to Y\{3}.



What do the sets  represent? Well,  is the set of mappings from X to Y which contain
“1” in Y as an image,  is the set of mappings from X to Y which contain “2” in Y as an image, and C
is the set of mappings from X to Y which contain “3” in Y as an image. It follows that  is the set of
mappings from X to Y which contain “1”, “2” and “3” in Y as images; that is,  is the set of onto
mappings from X to Y. Thus, our task here is to evaluate | |. We can therefore apply (13.6)!

Since S is the set of mappings from {1, 2, 3, 4, 5} to {1, 2, 3}, by 13.7) , |S| = 35.
Since A is the set of mappings from {1, 2, 3, 4, 5} to {2, 3}, by (13.7) again, |A| = 25.
Likewise, |B| = |C| = 25. As A ∩ B is the set of mappings from {1, 2, 3, 4, 5} to {3}, by (13.7)

again, A ∩ B| = 15 = 1.
Similarly, |A ∩ C| = |B n C| = 1.
Finally, observe that A ∩ B ∩ C is the set of mappings from X to 

Now, by (13.6), we have

We have seen in this chapter how Addition Principle (13.1) can be generalised to  (13.2); and, in
turn, (13.2) can be extended to (13.3). Moreover, we have derived an equivalent form (13.6) of
(13.3). In the next chapter, we shall introduce a more general form of (PIE) which deals with any n
subsets, where n ≥ 2, and we shall see how it can be applied to solve some interesting and more
complicated problems.
Exercise
13.1 Find the number of integers from the set {300, 301, … , 1000} which are multiples of 6 or 9.
13.2 How many positive integers n are there such that n is a divisor of at least one of the numbers

1030 , 2020?
13.3 A group of students took examinations in Chemistry, Mathematics and Physics.  Among them, 12

passed Chemistry, 15 Mathematics, and 10 Physics; 8 passed both Chemistry and Mathematics, 5
both Chemistry and Physics, and 6 both Mathematics and Physics. There were 20 students who
passed at least one of the three subjects. Find the number of students who passed all three
subjects.

13.4 Find the number of integers from the set {1,2,---, 1000} which are
 

  (i) divisible by at least one of 2, 3 and 5;
 (ii) divisible by none of 2, 3 and 5.

 
13.5 Seven distinct objects are to be put into three distinct boxes. Find the number of ways this can be

done if
 

  (i) there is no restriction;
 (ii) no box is empty.

 
13.6 The following figure shows a 5 by 8 rectangular grid with two specified corners p and q and

three specified segments ab, cd and ef. Find in the grid
 

   (i) the number of shortest p-q routes;
  (ii) the number of shortest p-q routes that pass through at least one of the segments ab, cd and ef;
 (iii) the number of shortest p-q routes that do not pass through any of the segments ab, cd and ef.



13.7 Let S be the set of 3-digit numbers abc such that a,b,c ∈ {1,2,…, 9} and a, b, c are pairwise
distinct. (Thus, 489 ∈ S, but 313  Find the number of members abc in S such that a
≠ 3, b ≠5 and c ≠ 7.

13.8 Find the number of integer solutions to the equation

  where 0 ≤ x ≤ 4,0 ≤ y ≤ 5 and 0 ≤ 2 ≤ 6. (See Chapter 7.)
13.9 A 5-digit ternary number is a number  x1x2x3x4x5, where xi = 0,1 or 2 for each i = 1,2,… , 5.

Thus, 00000, 01001, 21022, 11002, etc. are 5-digit ternary numbers. Find the number of 5-digit
ternary numbers in which each of the “0”, “1” and “2” appears at least once.

13.10 Two scouts x1, x2 from School X, 3 scouts y1, y2, y3 from School Y and 4 scouts z1, z2, z3, z4
from School Z get together in a meeting. In how many ways can they be arranged in a row if not
all scouts from the same school are allowed to form a single block in the row? (For instance, 

 is allowed, but  and  are not
allowed.)



Chapter 14
General Statement of the Principle of Inclusion and Exclusion

In Chapter 13, we introduced the Principle of Inclusion and Exclusion (PIE) by first deriving the
identity

for two finite sets A1 and A2, and then extending it to the following identity:

for three finite sets A1, A2 and A3. Naturally, one would like to know whether (14.1) and (14.2) could
be extended to an identity involving any n (≤ 2) finite sets Ai, A2,…,An and if so, what identity would
one get in general. The main objective of this chapter is to deal with this problem. We shall first
extend (14.2) to an identity involving four sets, and then by observing these special cases, we will
obtain the general statement of the (PIE) for any finite number of finite sets. Finally, two examples
will be given to illustrate the application of the general statement of the (PIE).

Suppose that four finite sets A1, A2, A3 and A4 are given. By applying (14.1), (14.2) and some
basic laws for sets, we have

That is,

Now, let us look at the identities (14.1)–(14.3) carefully and make some observations on the
patterns of the terms on the RHS of the identities.
For the sum of the terms within the first grouping, we have:



For the sum of terms within the second grouping, we have:

For the sum of terms within the third grouping, we have:

We also notice that the groupings alternate in sign, beginning with a (+) sign
Suppose now that we are given n finite sets: A1, A2, … , An. By generalising the above

observations, what identity would you expect for 
The first grouping should be the sum of  terms, each involving a single set:

in abbreviation,

The second grouping should be the sum of  terms, each involving the intersection of two sets:

in abbreviation,

The third grouping should be the sum of  terms, each involving the intersection of three sets:

in abbreviation,



Likewise, the fourth grouping should be the sum of  terms, each involving the intersection of
four sets:

and so on.
Bearing in mind that the groupings alternate in sign, beginning with a “+” sign, one would expect

that the following holds:

Indeed, it can be proved (for instance, by mathematical induction) that (14.4) holds for any n finite
sets A1, A2,…, An.

We shall now show an application of (14.4) by considering the following:
Example 14.1 How many ways are there to arrange n  (≥2) married couples in a row so that at
least one couple are next to each other?
Discussion and Solution Denote the n husbands and the n wives of the n couples by H1, W1, H2, W2,
…, Hn, Wn. Thus, when n = 4 for example, the following arrangements are allowed:

Solving the above problem by dividing it into cases such that exactly one couple are next to each
other, exactly two couples are next to each other, and so on would be very complicated.  Let us try to
apply (14.4).

For each i = 1,2,… ,n, let Ai be the set of arrangements of the n couples such that Hi and Wi are
adjacent (next to each other). The problem is thus to enumerate 

To apply (14.4), we compute each grouping on its RHS.
To compute  we first consider |A1| . A1 is the set of arrangements of n couples such that H1

and W1 are adjacent. This is the same as arranging the 2n – 1 objects:

in a row where H1W1 can be permuted in two ways: H1W1 and W1H1. Thus,

Similarly,  for each i = 2,3,…,n. Thus,

To compute   we first consider |A1 ∩ A2|. A1 ∩ A2 is the set of arrangements of the n
couples such that H1 and W1 are adjacent and H2 and W2 are adjacent. This is the same as arranging
the 2n – 2 objects:

in a row where both H1W1 and H2W2 can be permuted by themselves. Thus,

Similarly, for  Thus,

We now leave it to the reader to show that



and so on to obtain the following final result that

For the case when n = 4, we have

Next, we shall introduce an old problem regarding decks of cards. Two decks X, Y of cards, with
52 cards each, are given. The 52 cards of X are first laid out. Those of Y are then placed randomly,
one each on top of each card of X, so that 52 pairs of cards are formed. The question is: what is the
probability that no cards in each pair are identical (i.e. having the same suit and rank)? This problem,
known as “le probleme des rencontres ” (the matching problem), was introduced and studied by the
Frenchman Pierre Remond de Montmort (1678–1719) around the year 1708. The number of ways of
distributing the cards of Y to form 52 pairs of cards with those in X is clearly 52!. Thus, to find the
desired probability, we need to find out the number of ways of distributing the cards of Y such that
each card in Y is placed at the top of a different card in X.

Instead of solving the above problem directly, let us generalise it and consider the following more
general problem. A permutation a1a2 … an of  is called a derangement of  if ai ≠ i for each i ≠
1,2,… ,n. Thus 54132 is a derangement of  and 32154 are not. For n = 1, 2, 3, 4, all the
derangements of  are shown in the following table.
 
n Derangements
1 None
2 21
3 231, 312
4 2143, 2341, 2413, 3142, 3412, 3421, 4123, 4312, 4321
Let Dn denote the number of derangements of . It follows from the table above that D1 =0, D2 = 1,
D3 = 2 and D4 = 9. Returning back to the matching problem, it is now clear that its answer is given by 

. How do we evaluate Dn for each n? After some thought, you may realise that this is not a trivial
problem. Well, we are given a good opportunity to show our second application of (PIE).

Before proceeding any further, let us first derive an equivalent form of (14.4).
For a subset A of a universal set S, recall that A denotes its complement. It was pointed out in

Chapter 13 that (14.2) is equivalent to the following: For any subsets A1, A2, A3 of S,

In general, for any n (≥ 2) subsets A1, A2, …,An of S, one can show that (14.4) is equivalent to the
following:



We shall now evaluate  Dn by applying (14.5). Let us first identify what the universal set is. We
are now concerned with derangements, which are special types of permutations of . So, let the
universal set S be the set of all permutations of .

For each i = 1,2,…,n, let Ai be the set of permutations a1a2 … an in S such that ai = i. Thus,  is
the set of permutations in S such that ai ≠ i, and so  is the set of permutations in S such
that ai = i for all i = 1,2,…,n, which is exactly the set of derangements of . We thus have

To evaluate Dn by (14.5), we evaluate each grouping on the RHS of (14.5). Clearly, as S is the set of
all permutations of , we have 

Observe that A1 is the set of permutations of the form 1a2a3 … an. Thus,  Similarly, |Ai|
= (n – 1)! for each i = 2,3,… ,n, and so

As  is the set of permutations of the form 12a3a4 …an, we have 
Similarly,  for all i, j∈ {1,2,…, n} with i < j. There are  number of ways of
choosing i and j from {1,2,…, n} with i <j, and so

We now leave it to the reader to show that

and so on to obtain the following final result by (14.5) that

Note that for r = 1,2,…,n,

Thus,

Suppose we generate a permutation of  at random. The probability that this permutation is a
derangement is given by  which by the above result is

When n gets larger and larger, it is known that the quotient  gets closer and closer to 



where the constant e, called the natural exponential base, is defined by  It is known
that e ≈ 2.718281828459045. (The letter “e” was chosen in honour of the great Swiss mathematician
Leonhard Euler (1707–1783) who made some significant contributions to the study of problems
related to the limit above.)

We make a final remark which is useful when considering whether to use the general statement of
the (PIE) to enumerate |A| for a finite set A. In the event that it is not easy to partition A, i. e. to divide
it into cases of mutually exclusive subsets, we may ask the question: Can we find sets Ai, i = 1,2,…,n,
which are “easy” to count but with no necessity for them to be mutually exclusive, such that either 

Exercise
14.1 Show that the number of ways to seat n(≥2) married couples round a table so that at least one

couple are next to each other is

14.2 A lottery is run with each ticket bearing a distinct 7-digit number.  Every digit is chosen from the
digits 1, 2, 3, 4, 5, 6, 7 and all digits in the number are distinct. Only one prize is given. If all
possible tickets are sold, what is the probability that a randomly chosen ticket has at least 4
digits matching those of the winning ticket?

14.3 Show that the number of integer solutions to the equation (see Chapter 7)

such that 0 ≤ xr ≤ 9 for each r = 1, 2,…, 11 is given by

14.4 Each of ten ladies checks her hat and umbrella in a cloakroom and the attendant gives each lady
back a hat and an umbrella at random. Show that the number of ways this can be done so that no
lady gets back both of her possessions is

14.5 Show that the number of onto mappings from  where m ≥ n ≥ 1, is given by

14.6 A football team has five different jerseys. The team takes part in a tournament where they have to
play 8 matches.

(i) Find the number of ways the team wear their jerseys for the 8 matches
  (a) if there are no restrictions on the choices,
  (b) if the team never wears the same jersey on consecutive matches,
  (c) if the team uses at most three jerseys.

(ii) Given that each jersey is used at least once, show that the number of ways the team can
choose their jerseys is

(iii) State what the following expression represents as far as choosing jerseys is
concerned:



  Hence find the value of this expression for 1 ≤ n < 5.
(iv) Show that



Chapter 15
The Pigeonhole Principle

Think of any four integers. We assure that among these four integers, there are two whose difference
is divisible by 3. Should you be surprised?

In this chapter, we shall introduce a principle known as the Pigeonhole Principle from which we
will be able to deduce the certain existence of objects with some specified properties such as that in
the opening assertion.

Suppose 5 pigeons are to be put into two compartments A, B. They may be distributed in the
following ways: 5 in compartment A and 0 in compartment B, 4 in A and 1 in B, 3 in A and 2 in B, 2 in
A and 3 in B, 1 in A and 4 in B, or 0 in A and 5 in B. We observe that at least one of the compartments
will contain at least 3 pigeons. The general statement of this simple observation, known as the
Pigeonhole Principle, is given below.

We shall prove the Pigeonhole Principle by proving the contra- positive statement “If none of the
n boxes contain at least k + 1 objects, then no more than kn objects are distributed among the n
boxes.” Thus, if none of the n boxes contain at least k + 1 objects, then each box contains at most k
objects. Summing up the total number of objects in the n boxes, we have that there are not more than
kn objects in total. This proves the contrapositive statement and so proves the Pigeonhole Principle.

Recall that  is the least integer not less than x. A more general way of stating the Pigeonhole
Principle is as follows.

The proof for (15.2) is similar to that for (15.1). We leave it as a problem in the Exercise.
We shall now show an application of (PP) by posing a problem based on our assertion at the

beginning of this chapter.
Example 15.1 Show that, among any four integers, there are two integers whose difference is
divisible by 3.
Solution We treat the 4 integers as 4 objects, and create three “boxes”: Box (0) for integers which are
divisible by 3, Box (1) for integers which leave a remainder of 1 when divided by 3, and Box (2) for
integers which leave a remainder of 2 when divided by 3.

By (PP), there is at least one box with at least two integers. If the two integers are in Box (i),
where i = 0, 1 or 2, then we may express the integers as 3x + i and 3y + i, where x and y are integers.
We may assume that x ≥ y. Thus, the difference between the two integers is 



which is divisible by 3.
(PP) is also known as the Dirichlet Drawer Principle, after the German mathematician Peter G.

L. Dirichlet (1805–1859) who used it to prove some results in Number Theory. (PP), like the other
counting principles we have encountered, looks almost trivial. However, a Principle makes itself
most useful by suggesting an approach to attacking a problem. For example, the Addition Principle
(AP) suggests that to count the items in a set, it may be better to divide the set into smaller sets which
are easier to count by themselves; the Multiplication Principle (MP) suggests that to count the number
of ways a process, which is made up of a number of stages, can happen, we may approach the
problem by counting the number of ways each stage can happen; the Bijection Principle (BP) suggests
an approach where we count an “easier” set of items for which there is a bijection to the set of items
we are interested in. The Pigeonhole Principle suggests that to prove some “existence” statements in
mathematics, we try to transform the problem partly into one of distributing a number of objects into a
number of boxes. The questions to focus on then become “What are the objects?” and “What are the
boxes?”

We shall illustrate the use of (PP) with a few more examples.
Example 15.2 Seven darts are thrown at a dartboard which is circular and of radius  20 cm. If all
the darts land within the dartboard, show that there are two darts not more than 20 cm apart.
Solution We divide the dartboard into 6 equal sectors as shown in the figure below.

By (PP), there is at least one sector with at least two dart points. It can be shown that the
maximum distance between any two points in a sector is either the length of the radius or the length of
the chord. In either case, since the arc of the sector subtends an angle of 60° at the centre, the two
darts are not more than 20 cm apart.
Example 15.3 Consider a group of 6 persons, any two of whom are either mutual acquaintances or
do not know each other.  Prove that in the group, either there are  3 persons who are mutual
acquaintances or there are 3 persons who do not know each other.
Solution Let us fix one person, say A. “Distribute” the other 5 persons into two “boxes” — the box
containing those who are mutual acquaintances with A and the box containing those who do not know
A (and are not known by him). By (PP), at least one of the boxes contains at least  persons.

Suppose the box containing those who are mutual acquaintances with A contains at least 3
persons. If at least two of these persons are mutual acquaintances, then we have 3 persons (these two
together with A) who know each other. If none of these persons know each other, then these persons
will form a group of at least 3 persons who are complete strangers to one another.

On the other hand, suppose the box containing those that do not know A contains at least 3 persons.
If at least two of these persons do not know each other, then we have 3 persons (these two together
with A) who do not know each other.  If none of these persons do not know each other, then these
persons will form a group of at least 3 persons who are mutual acquaintances.

Example 15.3 above can also be proved by modelling the situation with a graph. We shall give a



brief introduction of graphs. A graph G consists of a set V of vertices (or points) and a set E of edges,
each of which joins a pair of vertices. In this book, we shall restrict ourselves to simple graphs,
where a pair of vertices is joined by at most one edge and where each edge joins a pair of distinct
vertices. The figure below shows three examples of simple graphs, which, in this book, we shall just
call graphs henceforth. Graph Theory is a fascinating and rich field of study in mathematics, with
many real-life applications as well as theoretical depth and aesthetic appeal.

We shall now return to  Example 15.3 and use graphs to solve the problem. Represent the 6
persons by vertices and join every pair of vertices with an edge. As a result, we have the third graph
in the figure above. Given any two vertices, the edge joining them is coloured red if the two persons
represented by the vertices know each other; otherwise, the edge is coloured blue.

Consider a vertex A. The 5 edges incident with A are coloured either red or blue. By (PP), at least
3 of them are coloured one colour, say red (the argument is similar for blue). Let the 3 vertices, other
than A, incident to these 3 red edges be B, C and D. If any two of the three, say B and C are joined by
a red edge, we have a red triangle joining A, B and C. Otherwise, there is no red edge between the 3
vertices and this implies that there is a blue triangle joining B, C and D. A red triangle represents 3
persons who are mutual acquaintances and a blue triangle represents 3 persons who do not know each
other.
 

A graph with edges connecting all pairs of vertices is called a complete graph. (How many edges
are there in a complete graph with n vertices?) Denote a complete graph with n vertices as Kn. The
problem above shows that if we colour the edges of K6 using two colours, we cannot avoid either
having a subgraph K3 containing all red edges or a subgraph K3 containing all blue edges. Can we
avoid having a subgraph K3 containing all red edges or a subgraph K3 containing all blue edges if we
two-colour (i.e. colour with two colours) the edges of K5? As it turns out, the answer is Yes — see
the figure below.

Clearly then, the least integer p such that a two-colouring of the edges of Kp will contain either a
“red” K3 or a “blue” K3 is 6. More generally, we can imagine two-colouring the edges of Kp and
asking the question:
Given integers m and n, what is the least integer p such that a two- colouring of the edges of Kp will
contain either a “red” Km or a “blue” Kn?

This least integer is called the Ramsey number for m and n, and is denoted by r(m, n) in honour of
its originator, Frank Ramsey (1903–1930). Frank Ramsey produced work in foundations of
mathematics, economics and philosophy. His paper on mathematics, On a Problem of Formal Logic,
examines methods for determining the consistency of a logical formula and it includes some theorems



on combinatorics which have led to the study of a whole new area of mathematics called Ramsey
theory. His vast potential was unfortunately not fully realised when he passed away at the early age of
27.

Frank Ramsey
It is always interesting in mathematics to try to extend a concept as far as possible. One way to

extend the concept of the Ramsey numbers is the following:
 
Given integers n1, n2,…,nr, what is the least integer p such that an r-colouring of the edges of Kp will
contain one of Kni coloured with colour i, where 1 ≤ i ≤ r?

We denote this number by r(n1, n2,… ,ns). Thus, for example, r(3, 4, 5) is the least integer p such
that a 3-colouring (say, red, blue, green) of the edges of Kp will contain either a red K3, a blue K4 or a
green K5. The following example illustrates how (PP) can be used to help find r(3, 3, 3).
Example 15.4 In a more realistic situation, any two persons in a group either know each other, do
not know each other, or are such that one knows the other but is not known by her/him.  Let us call
the third situation a “one-way relationship”. Prove that in a group of  17 mathematicians chosen
randomly from around the globe, there will be three who are mutual acquaintances, or mutual
strangers, or are among themselves in one-way relationships.  (A similar problem was posed in
IMO 1964/4.)
Solution Let the 17 persons be 17 vertices in a complete graph K17. Colour the edges of the graph
with 3 colours: red, blue and green to represent mutual friends, mutual strangers and one-way
relationship, respectively.

Consider one vertex A. There are 16 edges incident to A, so by (PP),  edges must be
coloured one colour, say red. If among the 6 vertices incident to A via red edges, there is a red edge
between two of them, then these two vertices together with A will form a red K3.

Suppose otherwise. Then the edges between the 6 vertices must be coloured with only two
colours, blue or green. This situation is similar to that of Example 15.3. Thus, there must be either a
blue K3 or a green K3 contained in the subgraph induced by the 6 vertices, and so there must be either
a blue K3 or a green K3 contained in the original graph K17.
Hence, a 3-colouring of K17 contains either a red K3, a blue K3 or a green K3, i.e. among the 17
mathematicians, there are three who are mutual acquaintances, or mutual strangers, or are among
themselves in one-way relationships.

Our solution of Example 15.4 above shows that the least integer p such that a 3-colouring of Kp
will contain one of a red K3, a blue K3 or a green K3 does not exceed 17, i.e. r(3, 3, 3) ≤ 17. To show
that r(3, 3, 3) is indeed equal to 17, what do we need to do? Just as in showing that r(3, 3) = 6 by



producing a 2-colouring of K5 that does not contain either a red K3 nor a blue K3, we now need to
produce a 3-colouring of K16 that does not contain any red K3, blue K3 or green K3. The following
figure shows such a 3-colouring of K16.

3-colouring of K16 that does not contain any dark line K3, grey line K3 or dash line K3
(PP) crops up in many areas of mathematics. To end this chapter, we show two more examples

which involve sequences and functions. As stated earlier, the Pigeonhole Principle suggests that to
prove some “existence” statements in mathematics, we try to transform the problem partly into one of
distributing a number of objects into a number of boxes. We then focus on the questions: “What are
the objects?” and “What are the boxes?”

Given a sequence of numbers, a subsequence of the original sequence is a sequence of numbers
obtained by deleting some of the numbers from the original sequence. For example, 1, 7, 6 is a
subsequence of 1, 4, 5, 7, 6, 8, 11, 10 which is itself a subsequence of 1, 3, 2, 4, 5, 7, 6, 8, 9, 11, 10,
12, …
Example 15.5 Prove that in a sequence of 10 distinct numbers, there is either an increasing
subsequence of 4 numbers or a decreasing subsequence of 4 numbers.

Before we begin our solution, we introduce some notation for subsequent ease of explanation. Let
x1, x2,… ,x10 be a sequence of 10 distinct numbers. Let p(xi) be the number of terms in the longest
increasing subsequence starting at xi and q(xi) be the number of terms in the longest decreasing
subsequence starting at xi. For example, in the sequence of 10 distinct numbers 4, 6, 3, 2, 7, 8, –1, 1,
0, 5, we have: p(x1) = |{4, 6, 7, 8}| =4 and q(x1) = |{4, 3, 2,1, 0}| = 5; p(x2) = |{6, 7, 8}| =3 and q(x2)
= |{6, 3, 2,1, 0}| = 5; and so on till p(x10) = |{5}| = 1 and q(x10) = |{5} = 1.
Solution We shall prove the proposition by contradiction.  Suppose there exists a sequence of 10
distinct numbers x1, x2,…,x10 where the longest increasing subsequence and the longest decreasing
subsequence do not exceed 3 numbers.

It is not obvious at this point what the boxes and the objects are. Since the problem has to do with



numbers of terms of subsequences, let us explore in this area.
Now, by the assumption, 1 ≤ p(xi) ≤ 3 and 1 ≤ q(xi) ≤ 3 for i = 1,2,... , 10, i.e. the ordered pairs

(p(xi),q(xi)) can only be from the set {(1,1), (1,2), (1,3), (2,1),… , (3,3)}. We can easily count the
number of such possible distinct ordered pairs directly as 9 (= 3 × 3).

At this juncture, the numbers ‘10’ and ‘9’ have appeared and since 10 = 9 + 1, it seems that there
is a possibility of using (PP). Are the objects the numbers xi? Are the boxes the distinct ordered pairs
from the set {(1,1), (1,2), (1,3),… , (3,3)}? Indeed, they are!

We place the numbers xi into these “boxes” of distinct ordered pairs so that if (p(xi),q(xi)) = (a,b),
then xi is placed in the box (a,b). By (PP), there are at least two numbers xi, xj, for some i, j, where 1
≤ i < j ≤ 10, in at least one box. This means that 

Note that xi ≠ xj since all the numbers are distinct. If xi < xj, add xi to the longest increasing
subsequence starting with xj. This will result in an increasing subsequence starting with xi that has
more terms than the longest increasing subsequence starting with xj. Thus, p(xi) > p(xj). (The values of
p(x1) and p(x2) in the example above show this situation: p(x1) = |{4, 6, 7, 8}| > |{6, 7, 8}| = p(x2).)

On the other hand, if xi > xj, add xi to the longest decreasing subsequence starting with xj. The
result will be a decreasing subsequence starting with xi that has more terms than the longest
decreasing subsequence starting with xj. In this case, q(xi) > q(xj). (The values of q(x2) and q(x10) in
the example above show this situation: 

In either case, the ordered pairs (p(xi), q(xi)) and (p(xj), q(xj)) must be distinct, a contradiction.
Hence, there is either an increasing subsequence of 4 numbers or a decreasing subsequence of 4
numbers.
Example 15.6 Let f be a bijection from  onto . Let f k =  denote the composition of k
number of f’s. (For example,  Show that there are distinct positive integers i and j
such that  Show also that for some positive integer k, 
Solution Observe that fk, for all  is a bijection from  onto  Thus, fk can be seen as a
permutation of  There are n! permutations of  and these can be seen as boxes in which we will
place the f k’s. However, there is an infinite number of k’s, and so by (PP), there is at least one box
with at least two f k’s. Hence, there are distinct positive integers i and j such that  for all 

Let i and j, where i < j, be such that  for all . Now, 
 Rewriting, we have  is

a permutation of Nra, we have that 
Exercise
 
15.1 Each cell in a 6 × 6 grid is filled with one of the numbers 1, 2, 3. Prove that of the sums along

the rows, the columns and the diagonals, two sums must be equal.
15.2 Five lattice points are chosen on an n × n square lattice. Line segments are drawn between every

pair of these points. Prove that one of the midpoints of these line segments is also a lattice point.
15.3 Show that for any set of 19 points chosen within a square whose sides are of length 4 units, there

are two points in the set whose distance apart is at most  units. Show also that there is also a
triangle formed from three points whose area is at most  square units.



15.4 Find the largest integer k in terms of n such that in a sequence of n distinct numbers, there is
either an increasing subsequence of k numbers or a decreasing subsequence of k numbers.

15.5 Prove (15.2), a more general statement of the Pigeonhole Principle:

15.6 Prove the Generalised Pigeonhole Principle (GPP) as stated below:

15.7 Given 16 distinct positive integers, each less than 62, show that at least three pairs of them have
the same absolute difference (the pairs are distinct but need not be disjoint as sets, for instance,
{2, 3} and {3, 4} are considered as two pairs with the same absolute difference).

15.8 What is the largest number of kings that can be placed on a normal 8 by 8 chessboard so that
none of them can take the other in the next move?

15.9 A student gave the following “proof” for the second part of Example 15.6. State whether you
agree with the “proof”. If not, explain why the “proof” is fallacious.

Problem Let f be a bijection from  onto  Show that for some positive integer 

Proof Observe that f k, for all  is a bijection from  onto  Thus, f k can be seen as a
permutation of . There are n! permutations of  and these can be seen as boxes in which we will
place the f k’s. Note that the identity permutation is one of these boxes. There is an infinite number of
k’s, and so by (PP), there is at least one f k in the box for the identity permutation. Hence, there is a
positive integer k such that 



Chapter 16
Recurrence Relations

Let us begin our discussion by considering the following counting problem.
Example 16.1 Figure 16.1 shows a 9-step staircase. A boy wishes to climb the staircase up to the
highest step. Suppose that each time, the boy either climbs up one step or two steps. How many
ways are there for the boy to climb the staircase?
Discussion and Solution We have learnt a number of principles and techniques to solve some
counting problems. Naturally, we would like to try and see if any of these can be applied to solve the
above problem without listing all the possible ways. After pondering for a while, however, we may
be doubtful about it. Splitting into cases look daunting and so we will not use the Addition Principle.
There does not seem to be any fixed set of stages from the ground to Step 9. That eliminates the
Multiplication Principle. No bijection is obvious. We cannot easily find sets  Ai,i = 1,2,...,n, such that
either  where A is the set to be counted. Thus, the General
Principle of Inclusion and Exclusion is not good here either. Is there any new idea available to tackle
the problem?

The number of steps of the staircase given in the problem, i.e. 9, may be a little too big. Why don’t
we try some simpler cases to gain some “feeling” about the problem?

When the staircase consists of 1, 2 and 3 steps, the ways of climbing the staircase are shown in
Figure 16.2, and the number of ways is respectively 1, 2 and 3, as well.

Figure 16.1

Figure 16.2



Figure 16.3
How about a 4-step staircase? Will the number be “4” also? No! The number of ways is now “5”

and the 5 different ways of climbing are shown in Figure 16.3.
Let us hold the 4-step case for a while and analyse why we have “5” ways here. We begin by

asking, “What can the boy do for his first move?” By assumption, he can cover 1 step or 2 steps. We
now split our consideration into two cases accordingly.
 
(i) Suppose the first move covers 1 step. Then there are 3 steps left. How many ways are there to

climb the remaining 3 steps? This question is crucial! Can we link it to the 3-step case? There are
3 ways to climb the 3-step staircase as shown in Figure 16.2(iii). Now, if we follow each of these
3 ways to climb the remaining 3 steps of our 4-step staircase, we will get 3 different ways (and
no more) to climb the 4-step staircase as shown in (1)–(3) of Figure 16.3.

(ii) Suppose the first move covers 2 steps. Then there are 2 steps left. There are 2 ways to climb the
2-step staircase as shown in Figure 16.2(ii). If we follow each of these 2 ways to climb the
remaining 2 steps of our 4-step staircase, we will get 2 different ways (and no more) to climb the
4-step staircase as shown in (4)–(5) of Figure 16.3.
It is now clear that by applying (AP), we will have 3 + 2, i.e. 5 different ways to climb the 4-step

staircase.
What have we learnt from the above analysis? We have learnt that the problem of bigger size (4-

step) depends on the same problem but of smaller size (3-step and 2-step), and the solution of the
problem of bigger size can be obtained from the solutions of the same problem but of smaller size.
This is a “new” idea for us. It works for “4-step”. Does it work for any “n-step”?

Now, given any integer n ≥ 3, for convenience, let us denote by an, the number of ways to climb
an n-step staircase. Thus, our previous records show that a1 = 1, a2 = 2, a3 = 3 and a4 = 5. Indeed, we
have just witnessed that a4 = a3 + a2 and you may also check that a3 = a2 + a1. Can we get a similar
“equality” for an?

Imagine now the boy is to climb an n-step staircase. His first move can cover, by assumption,
either 1 step or 2 steps. Divide our consideration into two cases as follows.
Case (1) The first move covers 1 step.

Then there are n – 1 steps left. How many ways are there to climb these remaining n – 1 steps? By
definition, there are an – 1 ways.
Case (2) The first move covers 2 steps.

Then there are n – 2 steps left. How many ways are there to climb these remaining n – 2 steps? By
definition, there are an – 2 ways.



Combining the results of these two cases by applying (AP), we conclude that an = an – 1 + an – 2
for n ≥ 3.

The original problem asks for the determination of a9. We shall evaluate it from the general result
“an = an – 1 + an – 2” together with some “initial” values (for instance, a1 = 1,a2 = 2,a3 = 3 and a4 =
5). Applying our general result successively, we have:

and finally

as required.
In the example above, we obtain a sequence of numbers, namely,

and in general, an = an – 1 + an – 2. The relation an = an – 1 + an –2which expresses an, for a general n,
in terms of some preceding numbers in the sequence (in this case, an – 1 and an – 2) is called a
recurrence relation.  As we have witnessed just now, deriving a recurrence relation is a way of
solving a class of counting problems.

The sequence of numbers 1,2,3, 5,8,... as given above is called the sequence of Fibonacci
numbers, named after the Italian mathematician Leonardo Fibonacci (1170–1250), a great
mathematical innovator during the Middle Ages. Fibonacci was born in Pisa. Around 1192, his father
was the director of the Pisan trading colony in Algeria. Hoping that his son would become a
businessman, the father brought Fibonacci to Algeria to study mathematics with an Arab master.  A
few years later, sent by the father on business trips, Fibonacci had several occasions to visit places
such as Egypt, Syria, Greece and Sicily, where he took the opportunity to learn various numerical
systems and methods of calculation. Around 1200, after returning to Pisa, Fibonacci started to write a
book entitled “Liber abbaci” (Book of the Abacus). The book was completed in 1202. In this book,
one finds the following counting problem about rabbits.

If we write Fn to denote the number of pairs of rabbits at the end of the nth month, then one can
see from Figure 16.4 that F1 = 1, F2 = 1, F3 = 2, F4 = 3, F5 = 5, etc. Indeed, it can be shown (see
Problem 16.5) in general that Fn = Fn – 1 + Fn – 2 for all n ≥ 3, which is essentially the same as the
recurrence relation an = an –1 + an – 2that we derived in Example 16.1. Note that in Example 16.1, our
initial values are a1 = 1 and a2 = 2 while in Fibonacci’s problem, we have F1 = Fmove is enough an2
= 1.



Statue of Fibonacci in Pisa,

Figure 16.4

Figure 16.5
Let us proceed to consider our second example.

Example 16.2 A tower of 8 circular discs of decreasing diameters is stacked on one of the three
vertical pegs as shown in Figure 16.5.

The task is to transfer the entire tower to another peg by a number of moves subject to the
following rules:
(i) each move carries exactly one disc; and
(ii) no disc can be placed on a smaller one.



What is the minimum number of moves required to accomplish the task?
Discussion and Solution Again, for convenience, let bn denote the minimum number of moves
required to transfer the entire tower with n discs from one peg to another. The problem is to find the
value of bn.

From the experience we have gained in the preceding example, let us first consider some of the
simpler cases. When n = 1, it is clear that one move is enough and so b1 = 1. When n = 2, a bit of
effort will show that two moves are not enough, whereas the following sequence of moves, as shown
in Figure 16.6, shows that three moves will do the job. Thus, b2 = 3.

Figure 16.6

Figure 16.7
Consider now the case when n = 3. The sequence of moves shown in Figure 16.7 shows that

seven moves are enough to accomplish the task.
Is “7” the minimum number of moves required? As shown in Figure 16.7(a)-(d), before the largest

disc can be moved to another peg, we have to transfer the entire tower of two smaller discs to a peg.
We know that this requires  b2 (= 3) moves. Next, we move the largest disc to the bottom of the only
“empty” peg as shown in Figure 16.7(d), (e). Finally, we have to transfer the entire tower of two
smaller discs and place it on the largest disc (Figure 16.7(e)–(h)), and this requires another b2 (= 3)
moves. Thus we need at least b2 + 1 + b2, i.e. 2b2 +1 (= 7) moves to accomplish the task. This fact,
together with the sequence of seven moves shown in Figure 16.7, shows that b3 = 7.

In the discussion above, we have found that b3 = 7. Indeed, we have obtained the relation b3 = 2b2
+ 1, an instance of a recurrence relation. The reader may easily check that b2 = 2b1 + 1 as well. Can
we generalise this relation? More precisely, given n ≥ 2, is it true that bn = 2bn–1 + 1?



Imagine now we have a tower of n (≥ 2) discs stacked on one of the 3 pegs (say peg (a) as shown
in Figure 16.8 and we wish to evaluate bn, the minimum number of moves needed to transfer the entire
tower of n discs to another peg.

In the process of transferring the entire tower, it is clear (by rule (ii) ) that at a certain stage, we
must arrive at the situation, as shown in Figure 16.9, where the entire tower of n – 1 smaller discs has
been transferred to another peg (say peg (c)). This is so because only then we can finally move the
largest disc from the original peg to the bottom of another peg (in this case, peg (b)). What is the
minimum number of moves needed to transfer the entire tower of n – 1 smaller discs from peg (a) to
peg (c)? By definition, this number is bn–1.

Figure 16.8

Figure 16.9

Figure 16.10
After moving the largest disc from peg (a) to peg (b) as shown in Figure 16.10, our final job is to

transfer the entire tower of discs at peg (c) on to the top of the largest disc at peg (b). By definition,
this number is bn–1 again.

Summing up, we see that the minimum number of moves that are needed for the whole task is bn–1
+ 1 + bn–1. Accordingly, by the definition of bn, we have

another example of a recurrence relation. Let us return to the problem in Example 16.2, where we
were asked to evaluate b8. Based on the result that bThe problem described i1 = 1, by applying our
recurrence relation successively, we obtain

and finally, b8 = 255, as required.
Observe that we actually have a nice single formula for the value bn:



and in general, bn = 2n – 1 (see Problem 16.9).
The problem described in Example 16.2 is known as the Tower of Hanoi.  Why is Hanoi, the

capital of Vietnam, associated with this problem? Well, this could have something to do with these
two facts: the inventor of the problem was French and the problem was introduced at a time when
France began her military involvement in Vietnam.

According to Andreas M. Hinz (in his paper, The Tower of Hanoi, published in 1999), the picture
shown in Figure 16.11 is of the cover of a box which was found in Paris in 1883. Looking at the
picture closely, we find several items therein which are related to tropical Asia, and in particular,
Vietnam. These include a Vietnamese, two sites in Vietnam, viz.  Tonkin and Annam, and the title “La
Tour d’Hanoi”.  Two special names also appear in the picture.  These are Professor N. Claus (de
Siam) and his College Li-Sou-Stian. According to the French mathematician de Parville, the two
names above are anagrams for Professor Lucas (d’Amiens), the inventor of this problem, and his
College Saint Louis. As Lucas was Agrege de l’Universite, it is believed that he is the one carrying
the ten-level tower in the picture.

Francois Edouard Anatole Lucas (1842–1891) was a French mathematician who did much work
in Number Theory, Recurrent Sequences and Recreational Mathematics. In the “pre-computer age”,
Lucas was the last “largest prime number record holder” (2127 – 1). He gave a closed-form
expression for the Fibonacci numbers as follows:

Figure 16.11



Edouard Lucas (1842–1891)
The associated Lucas sequence was named after him: 2, 1, 3, 4, 7, 11, 18, 29,.... Can you see the
recurrence relation that generates the Lucas sequence?

So far, we have discussed two counting problems and introduced a way, called the technique of
recursion or the method of recurrence relation, to solve them. The technique of recursion amounts to a
derivation of a recurrence relation (such as an = an – 1 + an–2 and an = 2an–1 + 1) which expresses the
required number of ways, an (when the size of the problem is n), in terms of the numbers of ways
when the sizes for the problem are smaller than n (such as an – 1, an–2). It is often very easy to find the
number of ways a1, a2, a3 when the sizes for the problem are very small. With these initial values, the
recurrence relation that has been established earlier will generate successively the values of the next
an’s. From a computational standpoint, solving a counting problem by the technique of recursion can
sometimes be more useful and efficient than by a formula, especially when we need to compute all the
values a1, a2,...,an up to some point.
Exercise
16.1  A man takes a bank loan of $300,000 that charges 1% interest per year in the first year, 2%

interest per year in the second year and 5% interest per year from the third year. Interest is
compounded yearly. The man pays $X each year to service the loan. You may assume that the
interest is computed just before the man's yearly payment.
(i) Write a recurrence relation and initial conditions for bn, the balance of the loan in dollars at

the end of n years.
(ii) What should $X, to the nearest dollar, be if the man intends to complete repayment at the

end of 10 years?
16.2  Suppose that you have an unlimited supply of red, blue, yellow and green counters, which are

indistinguishable except for colour. Write a recurrence relation and initial conditions for the
number sn of ways to stack n counters with no two consecutive green counters.

16.3  There are n lines in a plane. Every pair of lines intersect but no three meet at a common point.
How many regions is the plane divided into by these n lines?

16.4  There are n circles in a plane. Every pair of circles intersect at exactly two points but no three
meet at a common point. How many regions is the plane divided into by these n circles?

16.5  Let Fn denote the number of pairs of rabbits at the end of the nth month, where n ≥ 1, as given in
Fibonacci’s problem of rabbits. Show that Fn = Fn–1 + Fn–2 for n ≥ 3.

16.6  Find a recurrence relation and initial conditions for the number of binary sequences of length n
with no consecutive 0’s.

16.7  Find a recurrence relation and initial conditions for the number of binary sequences of length n
having no k consecutive 0’s.



16.8  Find a recurrence relation and initial conditions for the number of binary sequences of length n
that do not contain the sequence 101.

16.9  Let bn denote the minimum number of moves as defined in Example 16.2. Show that bn = 2n– 1
for all n ≥ 1.

16.10  A permutation a1a2 … an of  is called a derangement of  if ai ≠ i for each i = 1,2,...,n (see
Chapter 14). For n ≥ 3, let Dn be the number of derangements of . Show that



Chapter 17
The Stirling Numbers of the First Kind

In Chapter 3, we learnt that the number of ways to choose m objects from n distinct objects, where m
≤ n, and arrange them in a row is given by

As shown in Chapter 13 (see (13.8)), the expression (17.1) can also be interpreted as the number of
1-1 mappings from the set {1,2,…, m} to the set {1,2,…, n}.

As (17.1) will be mentioned very often in what follows, for simplicity, we may denote it by [n]m;
that is,

Let us replace “n” in (17.2) by a real variable “x”. Then we have

which can be regarded as a polynomial in x of degree m. For instance,

Just like what we did above, we shall express the polynomial [x]m in increasing order of powers of x.
The following question arises naturally: what can be said about the coefficient of xk in the expansion
of [x]m, where 0 ≤ k ≤ m? It is clear from (17.3) that this coefficient depends on both m and k; and so
let us, at this moment, denote it by s(m, k). Thus, we have:

By comparing with the expansions of [x]1, [x]2,…, [x]5 as shown above, we can easily obtain the
values of s(m,k), where 0 ≤ k ≤ m ≤ 5. These are recorded in Table 17.1 (note that we define s(0, 0)
to be 1).

It follows from (17.3) and (17.4) that s(m, 0) = 0 and s(m,m) = 1 for all m ≥ 1. Also, the sequence
of numbers s(m, 1),s(m, 2),…, s(m, m) alternate in sign with s(m, 1) positive when and only when m
is odd. It can be shown (see Problem 17.2) that for m ≥ 2, we have
 
  (i)  and
 (ii) 
 

How are we going to evaluate s(m, k) in general? We see from the above that when k = 0, 1 or k =
m – 1, m, the values of s(m, k) can be computed by simple formulas. For general k, there is a
“recursive” way to evaluate s(m, k) that we shall now present.

By comparing [x]m and [x]m–1 by (17.3), we have

Table 17.1 The values of s(m, k), 0 ≤ k ≤ m ≤ 5.



Thus, by (17.4),

Hence, by equating the coefficients of xk on both sides of the above equality, we have

and, in general,

As was pointed out before, the value of s(m, k) depends on two parameters: m and k. In (17.5),
we observe that the value of s(m, k) is expressed in terms of the values of s(m – 1,k – 1) and s(m –
1,k), where the values of the parameters do not exceed those in s(m,k). Thus, we can evaluate s(m, k)
if we know the values of s(p, q) where p ≤ m and q ≤ k. For instance, when (m, k) = (6, 3), by (17.5)

Checking from Table 17.1, we have s(5,2) = –50 and s(5,3) = 35. Thus

In Chapter 16, we introduced the notion of “recurrence relation” with examples such as an = an–1
+ an–2 and an = 2an–1 +1, where the value of an is expressed in terms of the values of ar’s where r <
n. The relation (17.5) is also regarded as a recurrence relation, but it is more complicated as it
involves two parameters.

The numbers s(m,k) are called the Stirling numbers of the first kind in honour of the Scottish
mathematician James Stirling (1692–1770). Inspired by the theory on plane curves due to Isaac
Newton, Stirling worked on its extensions and published in 1730 his most influential work Methodus
Differentialis, where the numbers s(m, k) were introduced.
Combinatorial Interpretation of the Stirling

Number s(m, k)
The Stirling number s(m, k) was defined as the coefficient of xk in the expansion of [x]m, which is

purely algebraic in nature. Does it have any combinatorial interpretation? The answer is yes, and we
shall now present one.

Let us recall the notion of “circular arrangement” from Chapter 7: two arrangements of n distinct
objects in a circle are considered different if and only if there is at least one object whose neighbour
on the right is different in the two arrangements. Recall also the following result:

Let us proceed further to study a variation of circular arrangements. Suppose now there are, say, 5



distinct objects to be arranged around, say, 2 identical circles with at least one object at each circle.
In how many ways can this be done? Again, before we move on, let us agree on what we mean when
we say that two arrangements are the same. We will use a definition which extends that for circular
arrangements in one circle: two arrangements of n distinct objects in k identical circles are
considered different if and only if there is at least one object whose neighbour on the right is different
in the two arrangements.

Thus, for instance, we agree that

while        

 

and          

With this clarification, we are now ready to solve the problem. There are two ways to split 5
distinct objects into 2 nonempty groups; namely,

Case (i) There are 4 objects around a circle and 1 object around another circle.
In this case, there are  ways to select 4 objects from 5 distinct ones to put them around one

circle. By (17.6), there are (4 — 1)! ways to arrange the selected 4 objects around the circle. (Of
course, the remaining object is on the other circle.) Thus the number of ways of arrangement is, by
(MP),

Case (ii) There are 3 objects around a circle and 2 objects around another circle.
In this case, there are  ways to select 3 objects from 5 distinct ones to put them around one

circle. By (17.6), there are (3 — 1)! ways to arrange the selected 3 objects around the circle. By
(17.6) again, the remaining 2 objects can be arranged around the other circle in (2 — 1)! ways. Thus
the number of ways of arrangement is, by (MP),

Finally, by (AP), the required number of arrangements is given by 30 + 20 = 50.
We thus conclude that the number of ways of arranging 5 distinct objects around 2 identical

circles with at least one object at each circle is 50.
 

Note that 50 is related to a Stirling number of the first kind. Indeed, s(5,2) = –50 (m = 5
corresponds to 5 objects and k = 2 corresponds to 2 circles).

For convenience, let us denote by s*(m, k), with k ≤ m, the number of ways of arranging m distinct
objects around k identical circles with at least one object at each circle. Thus, as shown above, s*(5,
2) = 50 = |s(5,2)|, where |x| denotes the absolute value of the real number x.

By comparing the answers of Problems 17.1 and 17.3, we have s*(6, 3) = 225 = |s(6, 3)|.



We define s*(0,0) = 1. Clearly, s*(m, 0) = 0 and s*(m, 1) = (m — 1)! by (17.6).
Our aim is to show that, indeed,

The result (17.5) provides us with a recurrence relation for the numbers s(m, k). In what follows,
we shall establish a corresponding recurrence relation for s*(m, k).

Let us give a combinatorial argument to see why (17.7) holds. The number s*(m, k) counts the
number of ways of arranging m distinct objects, say X1, X2,… ,Xm around k identical circles with at
least one object at each circle. Let us fix one of the objects, say Xm. Clearly, in any such arrangement,
either (i) Xm is the only object at a circle, or (ii) Xm is with others at a circle. We now count s*(m, k)
by splitting our consideration into the above two cases.
Case (i) Xm is the only object at a circle.

In this case, the remaining (m — 1) objects X1, X2,…, Xm-1 are arranged around k — 1 circles
with at least one object at each circle. By definition, there are s*(m — 1,k — 1) ways to do this.
Case (ii) Xm is mixed with others at a circle.

In this case, we can accomplish the task by first arranging the objects X1, X2,… ,Xm-1 around k
circles with at least one object at each circle and then place Xm in one of the circles. By definition,
there are s*(m — 1,k) ways to perform the first step. How many ways are there for the second step?
After arranging m — 1 objects around the circles, Xm can be placed at any of the m — 1 spaces to the
right of each object, and so there are m — 1 ways to do so. Thus, by (MP), there are (m — 1)s*(m —
1, k) ways in this case.

Finally, by (AP), we arrive at the result (17.7).
With the help of (17.5) and (17.7), we shall now see why 

Note that:

Also, as s(m — 1, k — 1) and s(m — 1, k) are different in sign or one of them is zero, we have

Consider (m,k) = (3,2). Observe that

When (m,k) = (4,2), we have

When (m,k) = (4,3), we have



If we proceed in this manner by following the ordering, say, (m,k) = (3,2), (4, 2), (4, 3), (5, 2), (5,
3), (5, 4), (6, 2), (6, 3), (6, 4), (6, 5), (7, 2), (7, 3), …, we shall always find that

Let us explain why (17.9) holds for all (m,k), where 1 ≤ k ≤ m, with the help of Figure 17.1. We
have already verified that (17.8) holds when k = 1 and k = m. This is indicated in Figure 17.1 at the
entries (m, k) enclosed by rectangles. The key tools in the process are the recurrence relations (17.5)
and (17.7) (and, of course, (17.8) also). We now start with (m, k) = (3,2). Using the verified results
for (2,1) and (2, 2), and applying (17.5) and (17.7), we show that (17.9) holds for (3, 2). This fact is
indicated in Figure 17.1 by the two arrows pointing to entry (3, 2) from entries (2, 1) and (2, 2). We
then proceed to (m, k) = (4, 2). Using the verified results for (3, 1) and (3, 2), and applying (17.5) and
(17.7), we show that (17.9) holds for (4, 2). Again, this is indicated in Figure 17.1 by the two arrows
pointing to entry (4, 2) from entries (3, 1) and (3, 2). Thus, following the ordering of (m, k) as fixed
above and the arrows pointing to the corresponding entries in Figure 17.1, we see that the result
(17.9) is indeed valid for each (m, k) with 1 ≤ k ≤ m.

Figure 17.1
 

Following this, the reader may want to attempt a rigorous proof of (17.9) by mathematical
induction (see Problem 17.4) using the inductive steps suggested by Figure 17.1.

Finally, we shall give a direct combinatorial argument for particular values of (17.9).
Let us consider the case when m = 8 and k = 3. By the algebraic definition, the Stirling number

s(8, 3) is the coefficient of x3 in the expansion of x(x — 1)(x — 2) … (x — 7). Then |s(8,3)| is the
coefficient of x3 in the expansion of x(x + 1)(x + 2) … (x + 7). The combinatorial definition says that
s*(8,3) counts the number of ways that elements 0, 1,2,… ,7 can be arranged around 3 identical
circles with at least one object at each circle. We shall show that the coefficient of x3 the expansion
of  is the same as the number of ways of arranging the 8 distinct elements around
3 identical circles with at least one object at each circle.

Note that the sum of the terms with x3 in the expansion of

is given by



Each term is a product of x3 and five numbers chosen from among 1 through 7. This can be seen as
taking three x’s from three factors and the “numbers” from the remaining five factors. Thus
 
Coefficient of x3 in the expansion of 

Now, let us see how this expression 3 · 4 · 5 · 6 · 7 + 2 · 4 · 5 · 6 · 7 + 2 · 3 · 5 · 6 · 7+ … +1 · 2 · 3
· 4 · 5 counts the number of ways elements 0 through 7 can be arranged around 3 circles with at least
one object at each circle.

Let us take a term, say 1 · 3 · 4 · 5 · 7. We place the “missing” elements 0, 2 and 6 on three
different circles and make the rule that these “missing” elements will be the least elements of the
circles. Next we place the remaining elements one at a time in increasing order. The number 1 has just
one option, which is on the right of 0 (it cannot be placed on either of the other circles for then it
would violate the least property of the incumbent “missing” elements 2 and 6, respectively). The
element 3 then has three options: the right of 0, the right of 1 or the right of 2 on the other circle. The
element 4 now has four options: the right of 0, the right of 1, the right of 2 or the right of 3. We can
similarly see that element i has i options. Thus, by (MP), the number of ways of placing the eight
elements 0, 1,2, … ,7 around three circles such that elements 0, 2 and 6 are the least elements in each
of their circles is 1 · 3 · 4 · 5 · 7.

Every term in the expression 3 · 4 · 5 · 6 · 7 + 2 · 4 · 5 · 6 · 7 + 2 · 3 · 5 · 6 · 7 + … + 1 · 2 · 3 · 4 · 5
can be combinatorially interpreted as above and every arrangement of the eight elements 0,1,2,…, 7
around three circles with at least one object at each circle can be matched uniquely to one term in the
expression. For example, the arrangement with 3, 4, 0 in clockwise order around one circle, 1, 2, 7 in
clockwise order around another circle and 5, 6 around a third circle, is matched uniquely to the term
with “missing” elements 0, 1, 5, i.e. the term 2 · 3 · 4 · 6 · 7. Hence, we have shown that s*(8,3) =
|s(8,3)|.

The reader is invited to prove the general result using the combinatorial argument above in
Problem 17.5.
Exercise
17.1 Find the values of s(6, k), where 1 ≤ k ≤ 6.
17.2 Show that for m ≥ 2,

  (i) 
 (ii) 

17.3 Show, from “first principles”, that the number of ways of arranging 6 distinct objects around 3
identical circles with at least one object at each circle is given by 225.

17.4 Use mathematical induction to show that 
17.5 A permutation (a1,a2,…, an) of the integers 1,2,… ,n is used to distribute these n integers into

indistinguishable circles as follows. Locate ai1 = 1 and arrange ai1,ai1+1,…,an in a clockwise
direction around a circle. Next, locate ai2 = min{a1,a2,…,ai1-1} and arrange ai2,ai2+1,…,ai1–1 in a
clockwise direction around a second circle. Continue doing this until all the integers are
distributed around k tables. Use this correspondence to show that



Chapter 18
The Stirling Numbers of the Second Kind

In the previous chapter, we introduced the Stirling number of the first kind s(m, k) which is defined as
the coefficient of xk in the expansion of

namely,

The sequence of numbers s(m, l),s(m, 2),..., s(m, m) alternate in sign with s(m, 1) positive when and
only when m is odd.

We also gave a combinatorial interpretation of s(m, k), i.e. the absolute value of s(m, k) is the
number of ways of arranging m distinct objects around k identical circles with at least one object at
each circle.

In this chapter, we shall introduce the other sequence of Stirling numbers, called the Stirling
numbers of the second kind.

Let us begin with a simple example. Consider four distinct objects: a, b, c and d. Clearly, there is
one and only one way to group them into one group, i.e. {a, b, c, d}; and there is one and only one
way to divide them into four groups, i.e.

Now, (i) how many ways are there to divide them into two groups? There are 7 ways as shown
below:

(ii) How many ways are there to divide them into three groups?
There are 6 ways as shown below:

Given two positive integers n and k with k ≤ n, the Stirling number of the second kind, denoted by
S(n,k), is defined as the number of ways of dividing n distinct objects into k (nonempty) groups; i.e.
the number of ways of partitioning an n-element set into k nonempty subsets. Thus, as shown in the
above example, we have

Example 18.1 Find the number of ways to express 2730 as a product ab of two numbers a and b,
where a > b > 2.
 
Solution Observe that 2730 = 2 · 3 · 5 · 7 · 13, and such a pair a,b of factors is obtained by dividing
{2,3, 5, 7,13} into two groups (and then taking the product of all the elements within each group).
Thus, the desired number of ways is given by S(5, 2) (= 15 (see Table 18.1)).
 

It is clear that
 

  (i) 
 (ii) 
(iii) 

 



We define
 

(iv) 
 
It can also be proved (see Problem 18.3) that for n ≥1,
 

 (v) ,
(vi) .

 
Table 18.1 The values of S(n, k), 0 ≤ k ≤ n ≤ 9.

The Number of Onto Mappings
We pointed out in Chapter 13 that the problem of counting the number of onto mappings from a finite
set to another finite set is not straightforward, and we showed by an example how to tackle this
problem by applying (PIE). Here, we shall point out that this counting problem is actually closely
related to the problem of evaluating the S(n, k)’s.

Consider an onto mapping from {a, b, c, d} to {1, 2, 3}, say,

This onto mapping can be regarded as first dividing the 4 elements a, b, c, d into 3 groups {a, b},
{c}, {d}, and then naming the groups as “1 , “2” and “3” respectively. If we rename the groups as “2,
“3” and “1” respectively, then we get another onto mapping :

Since there are 3! ways to name the 3 groups, we see that a way of dividing 4 distinct objects into
3 groups gives rise to 3! onto mappings from {a, b, c, d} to {1, 2, 3}. It thus follows that the number of
onto mappings from {a, b, c, d} to {1, 2, 3} is given by 3!S(4, 3) (= 36).

In general, we have:



Using the general statement of (PIE), as shown in Chapter 14, one can show that (see Problem
14.5) the number of onto mappings from an n-element set to a k-element set is given by

Combining this with (18.1), we have:

The formula (18.2) provides us with a way to evaluate S(n, k)’s. There is another way to do so.
As shown in Chapter 17, the Stirling numbers of the first kind s(m,k)’s satisfy the following
recurrence relation:

For the Stirling numbers of the second kind, likewise, we have the following recurrence relation :

To see why (18.3) holds, suppose a1, a2,...,an are the n distinct objects which are divided into k
groups. Consider a particular object, say a1 .
 
Case (1) a1 forms a group by itself.
In this case, the n – 1 objects a2,a3,...,an are then divided into k – 1 groups. By definition, there are
S(n – 1,k – 1) ways of grouping.
 
Case (2) a1 is in a group with at least one other object.

In this case, the n – 1 objects a2, a3,...,an are then divided into k groups and by definition, there
are S(n – 1,k) ways of grouping. In any such grouping, a1 has k choices to be in one of the k groups.
Thus there are kS(n – 1,k) ways in this case.

The relation (18.3) now follows by (AP).
Using the initial values shown earlier as (i)-(iv) and to be worked out in Problem 18.3 as (v) and

(vi), and applying (18.3), one can find out the values of other S(n,k)’s. For instance,

It is in this way that one can easily construct Table 18.1 for the values of the S(n, k)’s.
Expressing xn in terms of [x]i’s
As shown in Chapter 17, when [x]m is expressed in terms of xi,s, the Stirling numbers of the first kind
are the coefficients. Suppose, conversely, we wish to express xn in terms of [x]j’ s.  What can be said
about the coefficients? To answer this question, let us consider the following counting problem:

Let  = {1,2,3,..., n}. Determine a, the number of mappings from  to .
We shall now use two different methods to count a. The first method is the “natural” one (see

(13.7)):

The second method is a “stupid” one. According to the size  of the range of a mapping 
 the set of mappings from  to  can be partitioned into k groups Ai,i = 1,2,...,k, where Ai



consists of those mappings whose ranges have exactly i elements, i.e.

What is the value of |Ai|? Well, \Ai\ counts the number of onto mappings from  to an i-element
subset of . There are  number of ways to choose an i-element subset of , and the number of onto
mappings from  to this chosen i-element subset of  is i!S(n,i) by (18.1). Thus

Now, by (AP), we have

Comparing this result with (18.4) and noting that both count for a, we have

If we replace k by a real variable x, we then obtain:

Thus, we see that when xn is expressed in terms of [x]i’s, the Stirling numbers of the second kind
are the coefficients.

For instance, when n = 4,

Exercise
18.1 Find the value of S(10, k), where k = 1,2,3,4, 5. You may want to write a simple computer

program to generate the values.
18.2 Find, in terms of S(n, k), the number of ways to express 35310 as a product abc of three integers

a, b, and c, where a > b > c > 2.
18.3 Show that for n > 1,

  (i) 
 (ii) 

18.4 Show that for n > 3,
  (i) 
 (ii) 

18.5 In Example 13.4, we applied (PIE) to compute the number of onto mappings from a 5-element set



to a 3-element set, and found it to be “150”. Verify this result by applying (18.1) and the value
for S(5, 3) in Table 18.1.



Chapter 19
The Catalan Numbers

In Chapter 5, we learnt that the number of shortest P–Q routes in the 2 × 4 rectangular grid of Figure
19.1 is, by (BP), equal to the number of 6-digit binary sequences with four 0’s and two 1’s.  This is 

Consider the case when O = (0,0) and A = (n,n), where n is a positive integer. By (19.1), the
number of shortest O–A routes is given by  As shown in Figure 19.3 (where n = 4), we observe
that the  shortest O-A routes can be divided into two groups: those that cross the diagonal y = x
(see (i)) and those that do not (see (ii) and (iii)).

Figure 19.1

Figure 19.2

Figure 19.3
Around 1887, the French combinatorist Désiré André (1840-1917) studied the following

problem.



Table 19.1

For convenience, let us denote by f(n) the number of such nondiagonal-crossing shortest routes
from O(0,0) to A(n, n). For n = 1,2,3, all such routes and the values of f(n) are shown in Table 19.1.

In what follows, we shall present André’s elegant idea in solving the problem.
By translating a route in the coordinate system one unit to the right as shown in Figure 19.4, we

see that there is a 1-1 correspondence between the family of shortest routes from O(0, 0) to A(n, n)
that do not cross y = x and the family of shortest routes from P(1,0) to Q(n + 1, n) that do not meet y =
x.

Figure 19.4
Thus, by (BP), we have:

Now, let g(n) denote the number of shortest routes from P(1,0) to Q(n +1, n) that meet y = x.
Clearly, f (n)+ g(n) is the number of shortest routes from P(1, 0) to Q(n + 1,n). Thus, by (19.1), we



have:

Accordingly, to evaluate f (n), we may instead evaluate g(n).
But how to evaluate g(n)? Is it a less difficult problem? Let us first of all consider an example and

make some observations.
Figure 19.5 shows a shortest route from P(1,0) to Q(8, 7) (here, n = 7) that meets y = x.
Imagine that we are now traversing the route from P to Q. Let X be the point where the route meets

y = x for the first time (in Figure 19.5, X = (2,2)); note that such an X always exists. Consider the
reflection of this part of the route from P to X with respect to y = x as shown in Figure 19.6.
Beginning with this image of reflection and following the rest of the original shortest route from X to
Q, we obtain a shortest route from P′(0,1) to Q(8, 7).

Figure 19.5

Figure 19.6
The reader may check that this reflection does provide a 1-1 correspondence between the family

of shortest routes from P(1, 0) to Q(8, 7) that meet y = x and the family of shortest routes from P'(0,1)
to Q(8, 7). Thus, by (BP) and (19.1),

In general, we have

Combining this with (19.4), we see that



That is:

In particular, f(1) = 1, f(2) = 2 and f(3) = 5, which agree with Figure 19.1.
The numbers

that have just been obtained above are called Catalan numbers (denoted by C(n)) after the Belgium
mathematician Eugene Charles Catalan.

Catalan (1814-1894)
Indeed, around 1838, Catalan studied the following problem:

The ways of parenthesising x1 · x2……xn for n = 2,3,4 are shown in Table 19.2.
It turns out that the number of ways obtained are 1,2 and 5, and these are the first three Catalan

numbers.
Let us proceed to present another problem which is equivalent to the one introduced by E. Just in

The American Mathematics Monthly (76).
Table 19.2



Table 19.3 shows all such binary sequences for n = 1,2,3. Notice that the numbers of such
sequences are again the first three Catalan numbers.

Table 19.3

The solution of Problem (A) given by André gives rise to the Catalan numbers  The
answers for the first three initial cases of Problems (B) and (C) are 1,2 and 5, which are Catalan
numbers. Is it true that the answers for Problems (B) and (C) for general cases are also Catalan
numbers?

Yes, they are! In Table 19.4, we exhibit, by examples, 1-1 correspondences among the routes for
Problem (A), the ways of parenthesising x1 · x2 · … · xn for Problem (B) and the binary sequences for
Problem (C); and we leave it to the reader to figure out the rules for the correspondences.

One of the more general problems of this type, known as the Ballot Problem, is stated below.

Table 19.4

To find out the desired probability, the essential part of the solution is to find out the  number of
ways that X always stays ahead of Y throughout the counting of the votes.  The problem is clearly an
extension of Problems (A) and (C). Employing the ideas and techniques used to solve Problem (A),
Andre solved in 1887 this more general problem. Indeed, the Ballot Problem was first posed and
solved by Joseph Louis Francois Bertrand (1822-1900) in the same year 1887. The reader may refer



to An Introduction to Probability Theory and Its Applications by W. Feller for more details.
It was said that in 1751, the Swiss mathematician Leonhard Euler (1707-1783) proposed to

Christian Goldbach (1690-1764) the following problem which later became quite famous. The
problem was solved by Johann Andreas von Segner (1704-1777) in 1758 and by Catalan in 1838
using different methods.

All the triangulations of an n-sided polygon, where n = 3,4, 5, are shown in Table 19.5. The
reader may notice that the respective numbers of triangulations are the first three Catalan numbers.

Finally, let us introduce another interesting problem.

Table 19.5

Table 19.6

Table 19.6 shows all the ways for n = 1,2,3. Again, the numbers of ways are the first three
Catalan numbers.

The reader is invited in the Exercise to show that the numbers of ways for Problems (D) and (E)
are indeed Catalan numbers by establishing 1-1 correspondences between Problem (D) (respectively,
(E) ) and any of Problems (A)-(C).
Exercise
19.1 Show that the numbers of ways for Problem (D) are Catalan numbers by establishing a 1-1



correspondence between Problem (D) and any of Problems (A)-(C).
19.2  Show that the numbers of ways for Problem (E) are Catalan numbers by establishing a 1-1

correspondence between Problem (E) and any of Problems (A)-(C).
19.3   Using Problem (D) (triangulation of polygons), prove geometrically the following recurrence

relation:

19.4  A valid grouping of n pairs of parentheses is one where each open parenthesis has a matching
closed parenthesis. For example, ()(()) is valid, but ()())( is not. Let P(n) be the number of
valid groupings of n pairs of parentheses. Show that P(n) = C(n) by proving the recurrence
relation:

19.5  A stack is a data structure where insertions and deletions take place at the top of the stack. The
integers 1,2,...,n are in sequence in stack X with 1 on top. All the integers are to be moved to
stack Z via stack Y. Let the stacks X, Y, Z be placed in order from left to right. A move from one
stack to the stack on its immediate right is the deletion of the integer at the top of the left stack
and the insertion of the same integer to the top of the right stack. After exactly 2n such moves,
stacks X and Y will be empty and stack Z will contain a permutation of the integers 1,2,…,n.
  (i) Show that if n = 3, the permutation (2,1,3) cannot be generated.
 (ii) Find Pn, the number of permutations of 1,2,… ,n possible in stack Z.

19.6  Use the formula  to obtain the following recurrence relation:



Chapter 20
Miscellaneous Problems

20.1 One commercially available ten-button lock may be opened by depressing — in any order — the
correct five buttons. The sample shown below has {1,2,3,6,9} as its combination. Suppose that
these locks are redesigned so that sets of as many as nine buttons or as few as one button could
serve as combinations. How many additional combinations would this allow?

20.2 Calculate in how many ways each of the following choices can be made.
(i) 4 movies are to be downloaded from a list of 10 movies to be enjoyed during a holiday.
(ii) 200 essays have been shortlisted for a competition, and three are to be chosen so as to

receive the 1st, 2nd and 3rd prizes.
(iii) Eight children are to be chosen from a group of 20 children; the chosen children are then to

pair up and line up a pair behind the other, but order within each pair does not matter.
20.3 A society is planning a ballot for the office of president.  There are 5 candidates for the office. In

order to eliminate the order of the candidates on the ballot as a possible influence on the
election, there is a rule that on the ballot slips, each candidate must appear in each position the
same number of times as any other candidate. What is the smallest number of different ballot
slips necessary?

20.4 In the waiting area of a specialist clinic, patients sit on chairs arranged 10 to a row with an aisle
on either side. Ten patients are sitting in the second row.  How many ways are there for all the
patients in the second row to see the doctor if at least one patient has to pass over one or more
other patients in order to reach an aisle?

20.5 In how many ways can 4 a’s, 4 b’s, 4 c’s and 4 d’s be arranged in a 4 × 4 array so that exactly
one letter occurs in each row and in each column? (Such an arrangement is called a Latin
square.)

20.6  A card is drawn from a full pack of 52 playing cards.  If the card is a King, Queen or Jack, two
dice are thrown and the total T is taken to be the sum of the scores on the dice. If any other card
is drawn, only one die is thrown and T is taken to be the sum of the scores on the card (an Ace is
considered as 1) and the die. Find the number of ways for each of the following:

(i) T ≤ 2;
(ii) T ≥ 13;
(iii) T is odd.

20.7 In each of the following 5-digit numbers

every digit appears more than once. Find the number of such 5-digit numbers.
20.8 The following list contains some permutations of 9 in which each of the digits 2, 3, 4 appears in

between 1 and 9:

    Find the number of such permutations of 9.



20.9 The following list contains some permutations of 9 in which each of the digits 1, 2, 3 appears to
the right of 9:

     Find the number of such permutations of 9.
20.10 Find the number of ‘0’s at the end of 1 × 2 × 3 ×…× 2012.
20.11 Find the number of 15-digit ternary sequences (formed by 0, 1 and 2) in each of the following

cases:
 

(i) there is no restriction;
(ii) there are exactly three ‘0’s;
(iii) there are exactly four ‘0’s and five ‘1’s;
(iv) there are at most two ‘0’s;
(v) there is at least one pair of consecutive digits that are the same;
(vi) there are exactly one ‘00’, three ‘11’, three ‘22’, three ‘02’, two ‘21’ and two ‘10’ (for

instance, 002211102221102).
 
20.12 Find the number of (i) positive divisors, (ii) even positive divisors of 2160.
20.13 It can be checked that ‘12’ and ‘18’ are the only two positive integers that are divisible by 6

and have exactly 6 different positive divisors.
 

(i) Find all natural numbers which are divisible by 30 and have exactly 30 different divisors.
(ii) How many positive integers are there which are divisible by 105 and have exactly 105

different positive divisors?
20.14 Consider the following grid:

Find in the grid
(i) the number of shortest P-R routes;
(ii) the number of shortest P-Q routes.

20.15 In a shooting match, eight clay targets are arranged in two hanging columns of three each and
one column of two, as pictured.

A marksman is to break all eight targets according to the
      following rules:

(1) The marksman first chooses a column for which a target is to be broken.
(2) The marksman must break the lowest remaining unbroken target in the chosen column.
If these rules are followed, in how many different orders can

      the eight targets be broken?



20.16 Six scientists are working on a secret project. They wish to lock up the documents in a cabinet
such that the cabinet can be opened when and only when 3 or more of the scientists are present.
What is the smallest number of locks needed? What is the smallest number of keys each
scientist must carry?

20.17 A team for a boxing competition consists of a heavyweight, a middleweight and a lightweight.
There are 5 teams in the competition.
(i) If each person fights with each person of a similar weight class, how many fights take

place?
(ii) At the end of the competition, everyone shakes hands exactly once with every other person,

except his teammates (they have to tend to each other’s wounds later). How many
handshakes take place?

20.18 Find the number of paths in the array which spell out the word COUNTING.

20.19 Let A = {1,2,..., 500}. Find
(i) the number of 2-element subsets of A;
(ii) the number of 2-element subsets {a, b} of A such that a · b is a multiple of 3;
(iii) the number of 2-element subsets {a, b} of A such that a+b is a multiple of 3.

20.20 Two integers p and q, with p ≥ 2 and q ≥ 2, are said to be coprime if p and q have no common
prime factor. Thus 8 and 9 are coprime while 4 and 6 are not.
(i) Find the number of ways to express 360 as a product of two coprime numbers (the order of

these two numbers is unimportant).
(ii) In general, given an integer n ≥ 2, how do you find the number of ways to express n as a

product of two coprime numbers where the order is immaterial?
20.21 The lattice points of the following m x n(n ≤ m) grid are named as shown:

For k ∈ {1, 2,..., n}, let p be the number of shortest (k,k – 1)–
      (m, n) routes and q be the number of shortest (k – 1, k)–
     (m, n) routes. Show that p(n + 1 – k) = q(m + 1 – k).
20.22 The face cards (Kings, Queens and Jacks) are removed from a pack of playing cards. Six cards



are drawn one at a time from this pack of cards such that they are in increasing order of
magnitude. How many ways are there to do this?

20.23 There are 12 coins on a table. I pick up a number (non-zero) of coins each time. Find the
number of ways of picking up all the 12 coins in the following cases:
(i) I pick up all the 12 coins in an even number of picks.
(ii) I pick up an even number of coins each time.

20.24 Find the number of 4-tuples of integers
(i) (a, b, c, d) satisfying 1 ≤ a ≤ b ≤ c ≤ d ≤ 30;
(ii) (p, q, r, s) satisfying 1 ≤ p ≤ q ≤ r ≤ s ≤ 30.

20.25 Consider the following two 15-digit ternary sequences (formed by 0, 1 and 2):

       Observe that each of the sequences contains exactly three ‘00’,three ‘11’, three ‘22’, two ‘01’,
two ‘12’ and one ‘20’. Find the number of such ternary sequences.

20.26 There are n upright cups in a row. At each step, I turn over n-1 of them. Show that I can end up
with all the cups upside down if and only if n is even. Find the number of ways this can be done
in a minimum number of steps.

20.27 The following diagram shows 15 distinct points: w1, w2, w3, x1, . . . , x4, y1, . . . , y6, z1, z2
chosen from the sides of rectangle ABCD.
(i) How many line segments are there joining any two points each on different sides?
(ii) How many triangles can be formed from these points?
(iii)How many quadrilaterals can be formed from these points?
(iv) If no three line segments are concurrent in the interior of the rectangle, find the number of

points of intersection of these line segments in the interior of rectangle ABCD.

20.28 A ternary sequence is a sequence formed by 0, 1 and 2.  Let n be a positive integer. Find the
number of n-digit ternary sequences
(i) which contain at least one ‘0’;
(ii) which contain one ‘0’ and one ‘1’;
(iii) which contain three ‘2’s.

20.29 Each of the following six configurations consists of 4 vertices w, x, y, z  with some pairs of
vertices joined by lines. We are now given five colours 1, 2, 3, 4, 5 to colour the 4 vertices
such that
(1) each vertex is coloured by one colour and
(2) any two vertices which are joined by a line must be coloured by different colours.
How many different ways are there to colour each configuration?



20.30 If repetitions are not allowed, find the number of different 5-digit numbers which can be formed
from 0,1, 2,..., 9 and are
(i) divisible by 25;
(ii) odd and divisible by 25;
(iii) even and divisible by 25;
(iv) greater than 75000;
(v) less than 75000;
(vi) in the interval [30000, 75000] and divisible by 5.

20.31 There are 12 boys and 8 girls, including a particular boy B and two particular girls G1 and G2,
in a class. A class debating team of 4 speakers and a reserve is to be formed for the interclass
games. Find the number of ways this can be done if the team is to contain

 
(i) exactly one girl;
(ii) exactly two girls;
(iii) at least one girl;
(iv) at most two girls;
(v) Gi;
(vi) no B;
(vii) B and G1;
(viii) neither B nor G1;
(ix) exactly one from G1 and G2;
(x) an odd number of girls.

 
20.32 A group of 6 people is to be chosen from 7 couples.  Find the number of ways this can be done

if the group is to contain
 

(i) three couples;
(ii) no couples;
(iii) exactly one couple;
(iv) exactly two couples;
(v) at least one couple.

 
20.33 Find the number of ways in which 6 people can be divided into
 

(i) 3 groups consisting of 3, 2, and 1 persons;
(ii) 3 groups with 2 persons in each group;
(iii) 4 groups consisting of 2, 2, 1 and 1 persons;
(iv) 3 groups with 2 persons in each group, and the groups are put in 3 distinct rooms.



 
20.34 Show that the number of r-combinations of Nn which contain no consecutive integers is given

by , where 0 ≤ r ≤ n — r + 1.
20.35 Suppose the n integers in Nn are arranged consecutively round a table so that ‘1’ is also

adjacent to ‘n’. For 0 ≤ r ≤  let T(r) denote the number of r-combinations of Nn in which no
two integers are adjacent around the table. Show that

20.36 Three girls and five boys are to line up in a row. Find the number of ways if each boy is
adjacent to at most one girl.

20.37 There are n + 2 vertices, denoted by u,v,x1,x2,... ,xn, in a graph (see Chapter 15 for the concept
of a ‘graph’) as shown below:

    You are allowed to draw exactly n + 1 edges to link the vertices in such a way that
(1) each edge joins u or v to some xi,
(2) no two edges join the same pair of vertices, and
(3) the following configuration can never occur

     Thus, for instance, when n = 2, there are 4 different such graphs as shown below:

(i) Show all different such graphs for n = 3.
(ii) For all n ≥ 4, evaluate the number of different such graphs.

20.38 Find the coefficient of x9 in the expansion of (1+ x + x3 + x5)5.
20.39 Find the number of 4-element subsets {w, x, y, z} of 25 in each of the following cases:

(i) there is no restriction;
(ii) the product w · x · y · z is odd;
(iii) the product w · x · y · z is even;
(iv) the sum w + x + y + z is odd;
(v) the sum w ? x + y ? z is odd.

20.40 Find the number of positive divisors of 67500 in each of the following cases:
(i) there is no restriction;
(ii) the divisors are even;
(iii) the divisors are odd;
(iv) the divisors are multiples of 5;



(v) the divisors are multiples of 6.
20.41 Six distinct numbers a, b, c, d, e and f are chosen from the 8-element set {2,3,...,9} and are

arranged in a row in the order a, b, c, d,e, f. Find the number of ways this can be done if
(i) there is no restriction;
(ii) the product a · d is even;
(iii) the product a · b · c is odd;
(iv) the product a · b · c is odd and the product d · e · f is a multiple of 10;
(v) a, b and c are divisible by d, e and f respectively.

20.42 Every day, an inter-city train arrives at a station early (E), on time (T) or late (L), or the trip is
cancelled (C). Let Sn denote the number of possible sequences of arrival for the train in a
series of n days. Given that the train is never cancelled on two successive days, find a
recurrence relation for Sn. Prove also that S2n and S2n+1 are both divisible by 3n.

20.43 A special deck of 52 playing cards consists of cards without the usual numbers or pictures but
just bearing the suit (i.e. there are 13 cards of each of the four suits, Heart, Diamond, Spade and
Club, and the cards in each suit are indistinguishable from each other).
(i) Eight cards are selected from the deck. Find the number of different selections if there is at

least one card of each suit.
(ii) Eight cards are arranged in a row. Find the number of distinct sequences if there must be at

least one card of each suit.
(iii) Two cards of each suit are selected.  Find the number of ways they can be arranged in a

row if no two cards of the same suit are together.
20.44 Let n and k be positive integers with n ≥ k. A partition of n into exactly k parts is a way of

expressing n as a sum of k positive integers in which the ordering is immaterial; that is,

    and we may assume that n1 ≥ n2 ≥··· ≥ nk.
    For instance, three partitions of ‘8’ into exactly 4 parts are shown below:

     Note that a partition of n into exactly k parts can also be considered as a way of distributing n
identical objects into k identical boxes so that no box is empty.

Let p(n, k) denote the number of partitions of n into exactly k parts.
(i) Given that n ≥ k + 2 and k ≥ 2, prove that p(n,k) ≥ 2. Hence determine all values of n and k

such that p(n, k) = 1.
(ii) Prove that, for 
(iii) Find the values of  and  and verify that 

(iv) Prove that, for 1 ≤ m ≤ n,

(v) Find the value of p(9,3) and verify that p(10,4) = p(9, 3) + p(6, 4).
(vi) Show that, for 2 ≤ k ≤ n,

(vii) Prove that for m ≥ 1, p(6m, 3) = 3m2.
20.45(i) Ice-cream sticks are tied in bundles of 1, 2, 3 or 4. Let an be the number of ways of bundling

and arranging n icecream sticks in a line. Thus, a1 = 1, a2 = 2 and a3 = 4. For example, the
arrangements (1,1,1), (1,2), (2,1), and (3) show that a3 = 4. Find a4 and a recurrence



relation for an.
(ii) Ice-cream sticks and satay sticks are tied in bundles of 1, 2 or 3. Let bn be the number of

ways of bundling and arranging n sticks in a line. For example, if we label the two types of
sticks as c and s, the arrangements ({c}, {c}), ({c}, {s}), ({s}, {c}), ({s}, {s}), ({c,c}),
({c,s}), and ({s,s}) show that b2 = 7. Find a recurrence relation for bn.

20.46  (i) There are 20 seats in a row labelled from left to right with the numbers 1, 2,..., 20. Find the
number of ways of choosing 5 disjoint pairs of adjacent seats (for instance, {{3, 4}, {9,10},
{11,12}, {15,16}, {19, 20}} is a way) from them.

(ii) There are n seats in a row. Let r be a positive integer such that 2r ≤ n. Find the number of
ways of choosing r disjoint pairs of adjacent seats from them.

20.47 In the game of Mastermind, a code is constructed by arranging 4 out of 6 distinct coloured
counters in a row. This code is hidden from a player who attempts to break the code by making
a series of guesses. Each guess consists of placing counters (not necessarily distinct), which
can be chosen from the 6 available colours, into 4 slots in a row. Any of the 4 slots may also be
left ‘empty’ instead of placing a counter in it.  After each guess, the codemaker will check the
guess against the code. For each colour correctly placed, he will allocate a black token, and for
each colour present in the code but incorrectly placed, he will allocate a white token. For
example, suppose the code is (Blue, Green, Red, Yellow).  A guess of (Red, Red, Empty,
Empty) will be allocated 1 white token (for the incorrectly placed Red counter). A guess of
(Blue, Red, Red, Green) will be allocated 2 black tokens (for the correctly placed Blue and
Red counters) and 1 white token (for the incorrectly placed Green counter).
(i) How many possible guesses are there altogether?
(ii) How many guesses will result in no tokens?
(iii) How many guesses will result in 3 white and no black tokens?
(iv) How many guesses will result in 1 white and 3 black tokens?

20.48 Show that if a and b are integers, then the decimal representation of  either terminates or
eventually has a block of digits that repeats itself to infinity. (For example,  and 

 
        In what follows, let S be an n-element universal set, and let P1, P2,... ,Pq be q properties for

the elements of S, where q >1. For integer m with 0 ≤ m ≤ q, let E(m) denote the number of
elements of S that possess exactly m of the q properties and for 1 ≤ m ≤ q, let 
denote the number of elements of S that possess the properties Pi1, Pi2,..., Pim, and let

     where the summation is taken over all m-combinations {i1, i2,..., im} of {1,2,..., q}. We also
define w(0) to be |S|, i. e. w(0) = |S| = n.

         In the following problems, we shall establish the following generalised principle of
inclusion and exclusion (GPIE) and show two applications of it.



20.49 Prove the following identities.

20.50 Prove (GPIE).
     Hint: Let x ∈ S and assume that x possesses exactly t properties. Consider the different

possible values of t and count the contribution of x to each side of the inequality.
20.51 Find the number of integers from the set {1, 2,... , 1000} which are divisible by exactly two of

2, 5 and 7.
20.52 Using (GPIE) on a particular value of m, prove that the number of onto mappings from Nm to

Nn, where m ≥ n ≥ 1, is given by  (see Problem 14.5).
20.53 Use a direct combinatorial argument to show that \s(m,k)\ = s*(m, k).
20.54 For integers m,n ≥ 0, prove the following identities:

20.55 For integers m, n > 0, prove the following identities.
(i) 
(ii)

20.56 Let n, k and d be positive integers with n ≥ k ≥ d. Denote by Sd(n, k) the number of ways of
partitioning the n-element set n into k nonempty subsets such that for any two elements i and j
in each same subset, |i – j| ≥ d. For instance, {{4}, {1,3}, {2,5}} is a partition counted in
S2(5,3) and {{1}, {4}, {2, 5}, {3, 6}} is one counted in S2(6, 4) as well as S3(6,4). Clearly, S1

(n,k) = S(n,k).
(i) Verify that S2(5, 3) = 7 by listing all possible partitions.
(ii) Verify that S3(6, 4) = 7 by listing all possible partitions.
(iii) Show that Sd(n,k) = Sd(n – 1,k – 1) + (k – d + 1)Sd (n – 1,k), where n ≥ k ≥ d ≥ 2.
(iv) Show that Sd(n,k) = S(n – d + 1,k – d + 1) where n ≥ k ≥ d ≥ 2.

    (Mohr, A. and Porter, T. D., Applications of Chromatic Polynomials Involving Stirling
Numbers, Journal of Combinatorial Mathematics and Combinatorial Computing 70 (2009),
5764.)

20.57 For any positive integer n, the nth Bell number (named after E.T.  Bell (1883–1960)), denoted
by Bn, is defined as the number of ways of dividing n distinct objects into (nonempty) groups
i.e. the number of ways of partitioning an n-element set into nonempty subsets. For instance, B3
= 5 and the 5 ways of partitioning {1, 2, 3} into nonempty subsets are shown below: {{1, 2,
3}}, {{1, 2}, {3}}, {{1,3}, {2}},{{2,3},{1}}, {{1},{2},{3}}.
The first 10 Bell numbers are shown below:
B1 = 1, B2 = 2, B3 = 5,B4 = 15, B5 = 52, Be = 203,
B7 = 877, Bg = 4140, B9 = 21147, B10 = 115975.
(i) Explain why Bn = S(n, 1) + S(n, 2) + … + S(n, n).
(ii) Show that

20.58 A “depth” sequence of non-negative integers d1,d2,...,dn, satisfies
(i) d1 = 0



(ii) for i ≥ 1, di+1 ≤ di + 1.
    Show that the number of “depth” sequences of length n is C (n).

20.59 A standard Young tableau consists of two rows of boxes with  n boxes in each row in which the
integers 1,2<...,2n are placed such that the numbers increase from left to right and each number
in the bottom row is larger than the number in the box above it.

    Show that the number of standard Young tableau with 2n boxes is C (n).
20.60 For r = 1,2,...,2012, let Ar be a set such that |Ar| = 44. Assume that  for all i, j ∈

{1,2,..., 2012} with i ≠ j. Evaluate 
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Answers to Exercises
1.1 6
1.2 1, 5, 14, 55, 
1.3 (i) 20 (ii) 6n - 4
1.4 29
1.5 27
1.6 60
1.7 31
1.8 29
1.9 14
2.1 90
2.2 (i) 6 (ii) 15
2.3 (i) 20 (ii) mn (iii) mnt
2.4 30
2.5 (i) 3n (ii) 2n (iii) 2n–1(2 + n) (iv) n2 + n + 1
2.6 (i) 47 (ii) 205 (iii) 378
3.4 (n + 1)! – 1
4.1 (v) 2 · 9! (vi) 2 · 8! (vii) 9!3! (viii) 7!5! (ix) 2 · 5!6! (x) 8!9 · 8 · 7 (xi) 5!5!2 (xii) 2 · 4 · 5 · 6 · 7 ·

8 · 9 · 10 · 11
4.2 (iii) 728 (iv) 280 (v) 1319
4.3 9 · 7 · 5 · 3
4.4 (i) 10! (ii) 8!3! (iii) 7! · 8 · 7 · 6 (iv) 7!3!70
4.5 7 · 5 · 3
4.6 (i) 5! (ii) 4!2! (iii) 4!3
4.7 
4.8 
4.9 (i) 
4.10 162
4.11 
4.12 (i)324 (ii) 72
4.13 
4.14 (a)
5.1 (a) (i) 60 (ii) 36

(b) By FTA, express n as  Then number of positive divisors is 
5.2 
5.3 (i) 
5.7 
5.8 
5.9 
6.1 
6.2 
6.3 



6.4 
7.1 (i)  (v) 
7.2 (i) 
7.3 (i) 
7.4 (i) 
7.5 
7.6 
7.7 
7.8 
7.9 
7.10 
7.11 4!7!
7.12 (i) 4!5!(ii) 4!2 (iii) 4!25 (iv) 5!5!
7.13 (i) 10!(ii) 4!6!10
7.14 (i) 10!(ii) 4!6!10
7.15 (i) 4!2!(ii) 4 3 4!
8.1   (i) 96(ii) P6

9

8.3   (i) 84(ii) 75

8.4   
8.5   m ≥ n(i) n! 
9.1   
9.2   
9.3   (i)
9.4   (i) nm(ii)
9.5   (i) n! 
9.6   
9.7   
10.2 25
10.3 
10.4 
12.1 
12.2 
12.6 
12.7 

12.8 k = 44,n = 98
13.1 56
13.2 1171
13.3 2
13.4 (i) 734(ii) 266
13.5 (i) 37(ii) 1806



13.7 356
13.8 10
13.9 150
13.10 250848
   14.1Hint: For i = 1,2,...,n, let Ai be the set of ways such that Couple i are seated together.
   14.2 
         Hint: Divide into cases according to the number of matchings and find the corresponding

numbers of derangements.
   14.3 Hint: For i = 1,2,..., 11, let Ai be the set of integer solutions with xi ≥ 10.
   14.4 Hint: For i = 1,2,..., 10, let Ai be the set of ways such that Lady i gets back her hat and Bi be the

set of ways such that Lady i gets back her umbrella.
   14.5 Hint: For i = 1,2,...,n, let Ai be the set of mappings where i is not an image.
   14.6 (i) (a) 58 (b) 5 × 47 (c) 60505
           (ii) Hint: Let Ai be the set of ways without jersey i, for i =1, 2,3,4,5.
           (iii) The number of ways the team can choose a jersey from 5 jerseys for n matches if the team

uses each jersey at least once; 0
   15.1 Hint: Objects — sums along the rows, columns and diagonals; Boxes — all possible sums.
   15.2 Hint: Objects — coordinates of 5 lattice points; Boxes — all permutations of parities (odd or

even) of the x and y coordinates.
   15.3 Hint: Objects — 19 points; Boxes — (i) 16 squares of side 1 unit within bigger square; (ii) 9

squares of side  units within bigger square.
   15.4  Hint: Follow the proof of Example 15.5. Show also a sequence of n distinct numbers

where there is no increasing or decreasing subsequences of k + 1 numbers, for 
   15.5 Hint: Suppose none of the boxes contain at least  objects.
   15.6 Hint: Suppose for all i = 1,2,...,n, the ith box contains less than ki objects.
   15.7 Hint: Objects — pairs formed from the 16 objects; Boxes — possible absolute differences.

Watch out for a twist!
   15.8 Hint: Objects — the kings; Boxes — squares of side 2 units.
   15.9 (PP) is wrongly used.
   16.1 
            (ii) X = 36432 (to the nearest integer).
   16.2 sn = 3sn-1 + 3sn-2 for n ≥ 3, s1 = 4,s2 = 15.
   16.3 sn = sn-1 + n for n ≥ 2, s1 = 2.
   16.4 sn = sn-1 + 2(n – 1) for n ≥ 2, s1 = 2.
   16.5 Hint: Observe that Fn-i, 0 ≤ i ≤ n – 1, is also the number of rabbits that are at least i months
old at the beginning of the nth month.
   16.6 sn = sn-1 + sn-2 for n ≥ 3, s1 = 2,s2 = 3.
   16.7 sn = sn-1 + sn-2 + … + sn-k for n ≥ k + 1, si = 2i for i ≤ k – 1,sk = 2k – 1.
   16.8 sn = 2sn-1 – sn-2 + sn-3 for n ≥ 4, s1 = 2,s2 = 4, s3 = 7.
   16.9 Hint: Prove by induction on n.
  16.10 Hint: Suppose a1 = i,i = 2,3,...,n. Consider the cases ai = 1 and ai = 1.



   17.1 

   17.2 (i) Hint: Collect all the x terms in the expansion of [x]m.
           (ii) Hint: Collect all the xm-1 terms in the expansion of [x]m.
   17.3 Hint: Consider the cases (4, 1, 1), (3, 2, 1) and (2, 2, 2).
   17.5 Hint: Remember to show that every arrangement of n integers around k indistinguishable
circles corresponds to a unique permutation of 1,2,…,n.
   18.1 

   18.2 5(5, 3)
   18.3 (i) Hint: Suppose first that the two groups are distinct.
         (ii) Hint: First choose 2 items to put in one group.
   18.4 (i) Hint: Use induction on n. (ii) Hint: Use induction on n.
 18.5 Hint: First divide the 5 elements in the domain into 3 nonempty indistinguishable groups.
(vi) Hint: Split the counting according to whether there is a box with exactly one object.
20.45 (i) 8;  a2 = 2, a3 = 4, a4 = 8.

 for n ≥ 4, b1 =2, b2 = 7, b3 = 24.
20.46 
20.47 (i) 74 (ii) 34 (iii) 92 (iv) 0
20.48 Hint: Objects — “remainders” in the “long division” of a by b; Boxes — remainders when

divided by b.
20.49 (i) Hint: Consider two methods of dividing a group of n persons into three groups containing n

- m, m - r and r persons respectively.
(ii) Hint: Consider the binomial expansion of (1 + x)n for a particular value of x.

20.50 Further hint: Consider the cases t < m, t = m and t > m.
20.51 157

Hint: Let P1 be the property “divisible by 2”, P2 be the property “divisible by 5”, and P3 be
the property “divisible by 7”.

20.52 Hint: Let m = 0.
20.53 Hint: Generalise the argument at the end of Chapter 17.
20.54(i) Hint: Use mathematical induction. Alternatively, use the idea and result of Problem 17.6.

(ii) Hint: Unfold the recurrence s*(n + m + 1,m) = s*(n + m,m - 1) + (n + m)s*(n + m,m).
20.55 (i) Hint: Divide into cases according to the number of persons who are not in the same group

with a particular person A.
(ii) Hint: Unfold the recurrence relation S(n + m + 1,m) = S(n + m,m - 1) + mS(n + m, m).

20.56 (i) {{1, 3}, {2, 4}, {5}}, {{1, 3}, {2, 5}, {4}}, {{1, 4}, {2, 5}, {3}},{{1,4},{3,5}, {2}},
{{1,5}, {2, 4}, {3}},{{2,4},{3,5}, {1}}, {{1, 3, 5}, {2}, {4}}.
(ii) {{1, 4}, {2, 5}, {3}, {6}}, {{1, 4}, {2, 6}, {3}, {5}}, {{1, 4}, {3,6},{2},{5}}, {{1, 5},
{2, 6}, {3}, {4}}, {{1,5}, {3, 6}, {2}, {4}},{{1,6},{2, 5}, {3}, {4}},{{2,5}, {3, 6}, {1},
{4}}.
(iii) Hint: Divide into cases according to whether the subset {1} exists or not.
(iv) Hint: Use induction on n + k.

20.57 (i) Hint: Consider the different number of nonempty subsets that an n-element set can be



partitioned into.
(ii) Hint: Divide into cases according to the number of elements in the subset of which “n + 1”
is an element.

20.58 Hint: Obtain the sequence 0 – d1, 1 – d2 ,…,i-1 – di ,…,n– 1 – dn. Start with the 2n-digit binary
sequence 00 … 011 … 1. Now move the ith “0” to a position right of (i – 1 – di) “1”s. Show
that the resulting sequence fulfils the conditions of Problem (C).

20.59 Hint: Obtain a correspondence with Problem (C) as follows. Given a 2n-digit binary sequence,
the integers i, i = 1,2,. ..,2n, are placed in order according to the following rules:
• On the leftmost empty cell in row A if the ith digit is 0.
• On the leftmost empty cell in row B if the ith digit is 1.
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(vi) Hint: Split the counting according to whether there is a box with exactly one object.
20.45 (i) 8;  a2 = 2, a3 = 4, a4 = 8.

 for n ≥ 4, b1 =2, b2 = 7, b3 = 24.
20.46 
20.47 (i) 74 (ii) 34 (iii) 92 (iv) 0
20.48 Hint: Objects — “remainders” in the “long division” of a by b; Boxes — remainders when

divided by b.
20.49 (i) Hint: Consider two methods of dividing a group of n persons into three groups containing n

- m, m - r and r persons respectively.
(ii) Hint: Consider the binomial expansion of (1 + x)n for a particular value of x.

20.50 Further hint: Consider the cases t < m, t = m and t > m.
20.51 157

Hint: Let P1 be the property “divisible by 2”, P2 be the property “divisible by 5”, and P3 be
the property “divisible by 7”.

20.52 Hint: Let m = 0.
20.53 Hint: Generalise the argument at the end of Chapter 17.
20.54(i) Hint: Use mathematical induction. Alternatively, use the idea and result of Problem 17.6.

(ii) Hint: Unfold the recurrence s*(n + m + 1,m) = s*(n + m,m - 1) + (n + m)s*(n + m,m).
20.55 (i) Hint: Divide into cases according to the number of persons who are not in the same group

with a particular person A.
(ii) Hint: Unfold the recurrence relation S(n + m + 1,m) = S(n + m,m - 1) + mS(n + m, m).

20.56 (i) {{1, 3}, {2, 4}, {5}}, {{1, 3}, {2, 5}, {4}}, {{1, 4}, {2, 5}, {3}},{{1,4},{3,5}, {2}},
{{1,5}, {2, 4}, {3}},{{2,4},{3,5}, {1}}, {{1, 3, 5}, {2}, {4}}.
(ii) {{1, 4}, {2, 5}, {3}, {6}}, {{1, 4}, {2, 6}, {3}, {5}}, {{1, 4}, {3,6},{2},{5}}, {{1, 5},
{2, 6}, {3}, {4}}, {{1,5}, {3, 6}, {2}, {4}},{{1,6},{2, 5}, {3}, {4}},{{2,5}, {3, 6}, {1},
{4}}.
(iii) Hint: Divide into cases according to whether the subset {1} exists or not.
(iv) Hint: Use induction on n + k.

20.57 (i) Hint: Consider the different number of nonempty subsets that an n-element set can be
partitioned into.
(ii) Hint: Divide into cases according to the number of elements in the subset of which “n + 1”
is an element.



20.58 Hint: Obtain the sequence 0 – d1, 1 – d2 ,...,i-1 – di ,…,n– 1 – dn. Start with the 2n-digit binary
sequence 00 … 011 … 1. Now move the ith “0” to a position right of (i – 1 – di) “1”s. Show
that the resulting sequence fulfils the conditions of Problem (C).

20.59 Hint: Obtain a correspondence with Problem (C) as follows. Given a 2n-digit binary sequence,
the integers i, i = 1,2,. ..,2n, are placed in order according to the following rules:
• On the leftmost empty cell in row A if the ith digit is 0.
• On the leftmost empty cell in row B if the ith digit is 1.

20.60 86517
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